PHOSPHOTRANSCETYLASE (PTA)

[EC 2. 3. 1. 8]

from *Bacillus stearothermophilus*

Acetyl-CoA + Pi ↔ Acetylphosphate + CoA

SPECIFICATION

<table>
<thead>
<tr>
<th>State</th>
<th>Lyophilized</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specific activity</td>
<td>more than 5,000 U/mg protein</td>
</tr>
<tr>
<td>Contaminants</td>
<td>(as PTA activity = 100 %)</td>
</tr>
<tr>
<td></td>
<td>Acetate kinase</td>
</tr>
<tr>
<td></td>
<td>Adenylate kinase</td>
</tr>
<tr>
<td></td>
<td>Lactate dehydrogenase</td>
</tr>
</tbody>
</table>

PROPERTIES

Molecular weight	ca. 70,000	
Subunit molecular weight	ca. 35,000	
Optimum pH	7.5	
pH stability	7.0 - 11.0	
Isoelectric point	4.5	
Thermal stability	No detectable decrease in activity up to 50 °C.	
Michaelis constants	(87mM Tris-HCl buffer, pH 7.5, at 30 °C)	
	Coenzyme A	0.4 mM
	Acetyl Phosphate	1.1 mM

STORAGE

Stable at -20 °C for at least one year

APPLICATION

The enzyme is useful for determination of CoA or acetate.
ASSAY

Principle
The change in absorbance is measured at 233 nm according to the following reaction.

\[
\text{Acetylphosphate} + \text{CoA} \xrightarrow{\text{PTA}} \text{Acetyl-CoA} + \text{Pi}
\]

Unit Definition
One unit of activity is defined as the amount of PTA that forms 1 μmol of acetyl-CoA per minute at 30 °C.

Solutions
I. Buffer solution; 100 mM Tris-HCl, pH 7.5
II. CoA solution; 6.4 mM (50 mg CoA trilithium salt/10 mL distilled water)
III. Acetylphosphate solution; 217 mM (0.400 g acetylphosphate potassium lithium salt/10 mL distilled water)
IV. Ammonium sulfate (AmS) solution; 1 M (13.2 g AmS/100 mL distilled water)

Preparation of Enzyme Solution
Dissolve the lyophilized enzyme with distilled water and dilute to 5 to 20 U/mL with 50 mM Tris-HCl buffer, pH 8.0.

Procedure
1. Prepare the following reaction mixture and pipette 3.00 mL of reaction mixture into a cuvette.
 - Solution I: 26.0mL
 - Solution II: 2.0mL
 - Solution III: 1.0mL
 - Solution IV: 1.0mL
2. Incubate at 30 °C for about 3 minutes.
3. Add 0.01 mL of enzyme solution into the cuvette and mix.
4. Read absorbance change at 233 nm per minute (ΔAbs\textsubscript{233}) in the linear portion of curve.

Calculation
\[
\text{Volume activity (U/mL)} = \frac{(\Delta\text{Abs}_{233}) \times (3.00 + 0.01)}{4.44 \times 0.01} \times \text{d.f.}
\]

\[
\text{Specific activity (U/mg protein)} = \frac{\text{Volume activity (U/mL)}}{\text{Protein concentration (mg/mL)}}
\]

\text{d.f.} \text{ ; dilution factor}
\text{4.44 ; differential millimolar extinction coefficient between acetyl-CoA and CoA (cm}^2/\mu\text{mol)}
\text{*Protein concentration ; determined by Bradford's method}
Fig. 1 pH profile

- ● Tris-HCl

Fig. 2 pH stability

- △ acetate,
- ○ phosphate,
- ● Tris-HCl,
- ■ Gly-KOH

Fig. 3 Thermal stability

- treated for 15 min in 50 mM Tris-HCl buffer, pH 8.0

Fig. 4 Thermal stability

- treated in 50 mM Tris-HCl buffer, pH 8.0
- ○ 50 °C, □ 60 °C, ● 65 °C