

GLUCOKINASE (ZM-GlcK)

[EC 2. 7. 1. 2]

from Zymomonas mobilis

ATP + D-Glucose ↔ ADP + D-Glucose-6-phosphate

SPECIFICATION

State	: Lyophilized	
Specific activity	: more than 150 U/mg protein	
Contaminants	: (as ZM-GlcK activity = 100 %)	
	Glucose-6-phosphate dehydrogenase	< 0.02 %
	Phosphoglucomutase	< 0.01 %
	6-Phosphogluconate dehydrogenase	< 0.01 %
	Hexose-6-phosphate isomerase	< 0.01 %
	Glutathione reductase	< 0.01 %

PROPERTIES

Molecular weight	: ca. 66,000	
Subunit molecular weight	: ca. 33,000	
Optimum pH	: 7.0 - 8.0	(Fig. 1)
pH stability	: 6.0 - 8.0	(Fig. 2)
Thermal stability	: No detectable decrease in activity up to 40 °C.	(Fig. 3, 4)
Michaelis constants	: (60 mM Phosphate buffer, pH 7.0, at 30 °C)	
	Glucose	0.10 mM
	ATP	0.65 mM
Activator	: Pi	

STORAGE

Stable at -20 °C for at least one year

APPLICATION

The enzyme is useful for diagnostic reagent, for example, glucose determination or CK determination, and for the specific determination of glucose. Tris-HCI buffer is not suitable for the practical use of ZM-GlcK.

ASSAY

Principle

The change in absorbance is measured at 340 nm according to the following reactions.

ATP + Glucose ZM-GlcK ADP + Glucose-6-phosphate

Glucose-6-phosphate + NAD⁺ Gluconolactone-6-phosphate + NADH + H⁺

Unit Definition

One unit of activity is defined as the amount of ZM-GlcK that forms 1 μ mol of glucose-6-phosphate per minute at 30 °C.

Solutions

- I Buffer solution ; 100 mM Triethanolamine NaOH and 3 mM K₂HPO₄, pH 7.5
- II ATP solution ; 100 mM (0.605 g ATP disodium salt·3H₂O/(8.2 mL distilled water + 1.8 mL 1 N-NaOH))
- III MgCl₂ solution ; 1 M (20.33 g MgCl₂·6H₂O/100 mL distilled water)
- IV NAD⁺ solution ; 100 mM (0.663 g NAD⁺ free acid/10 mL distilled water)
- V Glucose solution ; 40mM (0.072 g glucose (anhyd.)/10 mL distilled water)
- VI Glucose-6-phosphate dehydrogenase (G6PDH) ; 2000 U/mL (from *Zymomonas mobilis*, Nipro Corp., Dissolve with Buffer solution I)

Preparation of Enzyme Solution

Dissolve the lyophilized enzyme with distilled water and dilute to 5 to 10 U/mL with 50 mM potassium phosphate buffer containing 1 mg/mL BSA, pH 7.0.

Procedure

1. Prepare the following reaction mixture and pipette 3.00 mL of reaction mixture into a cuvette.

Solution I	20.07 mL	SolutionIV	0.60 mL
Solution II	1.50 mL	Solution V	7.50 mL
Solution III	0.30 mL	Solution VI	0.03 mL

2. Incubate at 30 °C for about 3 minutes.

- 3. Add 0.01 mL of enzyme solution into the cuvette and mix.
- 4. Read absorbance change at 340 nm per minute (ΔAbs_{340}) in the linear portion of curve.

Calculation

Volume activity (U/mL) =
$$\frac{(\Delta Abs_{340}) \times (3.00 + 0.01)}{6.22 \times 0.01} \times d.f.$$

Specific activity (U/mg protein) =

Protein concentration (mg/mL)*

d.f. ; dilution factor

6.22 ; millimolar extinction coefficient of NADH (cm²/µmol) *Protein concentration ; determined by Bradford's method

REFERENCE

1. Scopes. R.K., Testolin, V., Stoter, A., Griffiths-Smith, K., and Algar, E.M.; *Biochem. J.*, **228**, 627 (1985)

