

ALCOHOL DEHYDROGENASE (ZM-ADH)

[EC 1 .1 .1 .1]

from Zymomonas mobilis

Alcohol + NAD+ ↔ Aldehyde + NADH + H+

SPECIFICATION

State : Lyophilized

Specific activity : more than 400 U/mg protein Contaminants : (as ZM-ADH activity = 100 %)

Glucose-6-phosphate dehydrogenase < 0.10 %
Glucokinase < 0.02 %
Pyruvate kinase < 0.02 %
NADH oxidase < 0.01 %
Lactate dehydrogenase < 0.01 %

PROPERTIES

Molecular weight : ca. 148,000 Subunit molecular weight : ca. 37,000

Michaelis constants : (100 mM Glycine-KOH buffer, pH 9.0, at 30 °C)

 Ethanol
 110 mM

 Methanol
 350 mM

 NAD+
 0.12 mM

 Acetaldehyde
 1.66 mM

 NADH
 0.03 mM

Substrate specificity : Ethanol 0.03 mM 100 % Methanol 0.05 %

 n-Propanol
 42.3 %

 n-Butanol
 0.28 %

STORAGE

Stable at -20 °C for at least six months

APPLICATION

The enzyme is useful for determination of alcohols or aldehydes.

ASSAY

Principle

The change in absorbance is measured at 340 nm according to the following reaction.

Unit Definition

One unit of activity is defined as the amount of ZM-ADH that forms 1 μ mol of NADH per minute at 30 °C.

Solutions

- I Buffer solution; 80 mM Glycine-KOH, pH 9.5
- II NAD+ solution; 10 mM (0.0663 g NAD+ free acid/10 mL distilled water)
- Ⅲ Ethanol solution; Ethanol (96 %)

Preparation of Enzyme Solution

Dissolve the lyophilized enzyme with distilled water and dilute to 5 to 10 U/mL with 50 mM Tris succinate buffer containing 1mg/mL BSA and 0.2 mM CoCl₂, pH 7.0

Procedure

1. Prepare the following reaction mixture and pipette 3.00 mL of reaction mixture into a cuvette.

Solution I 22.90 mL Solution II 6.00 mL Solution III 1.10 mL

- 2. Incubate at 30 °C for about 3 minutes.
- 3. Add 0.01 mL of enzyme solution into the cuvette and mix.
- 4. Read absorbance change at 340 nm per minute (ΔAbs₃₄₀) in the linear portion of curve.

Calculation

Volume activity (U/mL) =
$$\frac{(\Delta Abs_{340}) \times (3.00 + 0.01)}{6.22 \times 0.01} \times d.f.$$

d.f.; dilution factor

6.22; millimolar extinction coefficient of NADH (cm²/µmol) *Protein concentration; determined by Bradford's method

REFERENCE

1. Neale, A.D., Scopes. R.K., Kelly, J.M., and Wettenhall, R.E.H.; Eur. J. Biochem., 154, 119 (1986)

treated for 15 min in 0.1 M phosphate buffer containing 0.2 mM CoCl₂, pH 6.5

Fig. 2 pH stability

treated for 24 hr at 4 °C in the following buffer solution (0.1 M), containing 0.5 mM CoCl₂;

△ acetate, O phosphate,

■ Tris-HCl, ■ Gly-KOH

treated in 0.1 M phosphate buffer containing 0.2 mM CoCl₂, pH 6.5 O 50 °C, □ 55 °C, ● 60 °C