

(Fig. 1)

(Fig. 2)

SORBITOL DEHYDROGENASE (SorDH)

[EC 1.1.1.14]

from Microorganism

D-Sorbitol + NAD⁺ ↔ D-Fructose + NADH + H⁺

SPECIFICATION

State : Lyophilized

Specific activity : more than 30 U/mg protein Contaminants : (as SorDH activity = 100 %)

NADH oxidase <0.01 %

PROPERTIES

Molecular weight : ca. 68,000 Subunit molecular weight : ca. 26,000 Optimum pH : 11.0

pH stability : 6.0 - 10.0 Optimum temperature : 40 °C

Thermal stability : No detectable decrease in activity up to 35 °C. (Fig. 3, 4)

Michaelis constants : (100 mM Tris-HCl buffer, pH 9.0, at 30°C)

D-Sorbitol 3.4 mM NAD⁺ 0.13 mM

Substrate specificity : D-Sorbitol 100 %

27 % Galactitol L-Iditol 42 % **Xylitol** 1 % D-Arabitol 0 % D-Mannitol 0 % D-Glucose 0 % 0 % **D-Galactose** 0 % Maltose

STORAGE

Stable at -20 °C for at least one year

APPLICATION

This enzyme is useful for determination of D-Sorbitol in clinical analysis and food analysis.

ASSAY

Principle

The change in absorbance is measured at 340 nm according to the following reaction.

Unit Definition

One unit of activity is defined as the amount of SorDH that forms 1 µmol of NADH per minute at 30 °C.

Solutions

- I Buffer solution; 100 mM Tris-HCl buffer, pH 9.0
- II NAD⁺ solution; 20 mM (133 mg NAD⁺ free acid /10 mL distilled water)
- Ⅲ D-Sorbitol solution; 500mM (911 mg D-Sorbitol/10 mL 100 mM Tris-HCl buffer, pH 9.0)

Preparation of Enzyme Solution

Dissolve the lyophilized enzyme with distilled water and dilute to 5 to 10 U/mL with 50mM Tris-HCI buffer containing 1 mg/mL BSA, pH 8.0.

Procedure

1. Prepare the following reaction mixture and pipette 3.00 mL of reaction mixture into a cuvette.

solution II 24.00mL solution II 3.00mL 3.00mL

- 2. Incubate at 30 °C for about 3 minutes.
- 3. Add 0.01 mL of enzyme solution into the cuvette and mix.
- 4. Read absorbance change at 340 nm per minute (ΔAbs_{340}) in the linear portion of the curve.

Calculation

Volume activity (U/mL) =
$$\frac{(\Delta Abs_{340}) \times (3.00 + 0.01)}{6.22 \times 0.01} \times d.f.$$

d.f.; dilution factor

6.22; millimolar extinction coefficient of NADH (cm²/µmol) *Protein concentration; determined by Bradford's method

Fig. 1 pH profile

△ acetate, O phosphate,
● Tris-HCl, ▲Gly-KOH,
■ Na₂HPO₄-NaOH

Fig. 3 Thermal stability

treated for 15 min in 0.1 M Tricine buffer, pH 8.0

Fig. 2 pH stability

treated for 24 hr at 4 °C in the following buffer solution (0.1 M); △ acetate, O phosphate,

- Tris-HCl, ▲ Gly-KOH,
- Na₂HPO₄-NaOH

Fig. 4 Thermal stability

treated in 0.1 M Tricine -NaOH buffer, pH 8.0 O 35 °C, □ 40 °C, ● 45 °C