

SUPEROXIDE DISMUTASE (SOD)

[EC 1.15.1.1]

from Bacillus stearothermophilus

 $O_2^- + O_2^- + 2H^+ \leftrightarrow O_2 + H_2O_2$

SPECIFICATION

State Specific activity Contaminants	 : Lyophilized : more than 9,000 U/mg protein : (as SOD activity = 100 %) Catalase 	< 0.01 %
PROPERTIES		
Molecular weight	: ca. 50,000	
Subunit molecular weight	: ca. 25,000	
Metal content	: 1.5 g atoms of Mn per mole of enzyme	
Optimum pH	: 9.5	(Fig. 1)
pH stability	: 6.0 - 9.0	(Fig. 2)
soelectric point	: 4.5	() /
Thermal stability	: No detectable decrease in activity up to 60 °C.	(Fig. 3, 4)

STORAGE

Stable at -20 °C for at least one year

APPLICATION

The enzyme is useful for medicine, cosmetic material and nutrition or antioxidant.

ASSAY

Principle

To determine the enzyme activity of cytochrome c reduction is measured by the following reactions.

Xanthine + O_2 Xanthine oxidase Urate + O_2^- + H_2O_2 $O_2^ O_2^ O_2^$

Unit Definition

One unit of activity is defined as the amount of SOD required to inhibit the rate of reduction of cytochrome C by 50 % at 30 °C.

Solutions

- I Buffer solution ; 75 mM Potassium phosphate buffer, pH 7.8
- I Xanthine solution ; 0.75 mM (0.010 g xanthine/50 mL N/250 NaOH)
- II Cytochrome c solution : 0.15 mM (0.019 g cytochrome c/10 mL distilled water. Sigma-Aldrich Co., No. C-2506, from horse heart)
- IV EDTA solution ; 1.5 mM (0.028 g EDTA disodium salt 2H₂O/50 mL distilled water)
- V Xanthine oxidase (XOD); (from buttermilk, Sigma-Aldrich Co., No. X-1875) suspension in 2.3 M (NH₄)₂SO₄ solution is diluted to 0.04 U/mL with distilled water. (prepare freshly)

Preparation of Enzyme Solution

Dissolve the lyophilized enzyme with distilled water and dilute to approx. 600 U/mL with 50 mM potassium phosphate buffer, pH 7.5.

Procedure

1. Prepare the following reaction mixture and pipette 2.80 mL of reaction mixture and 0.005 mL of enzyme solution into a cuvette.

Solution I	22.00 mL	Solution III	2.00 mL
Solution II	2.00 mL	SolutionIV	2.00 mL

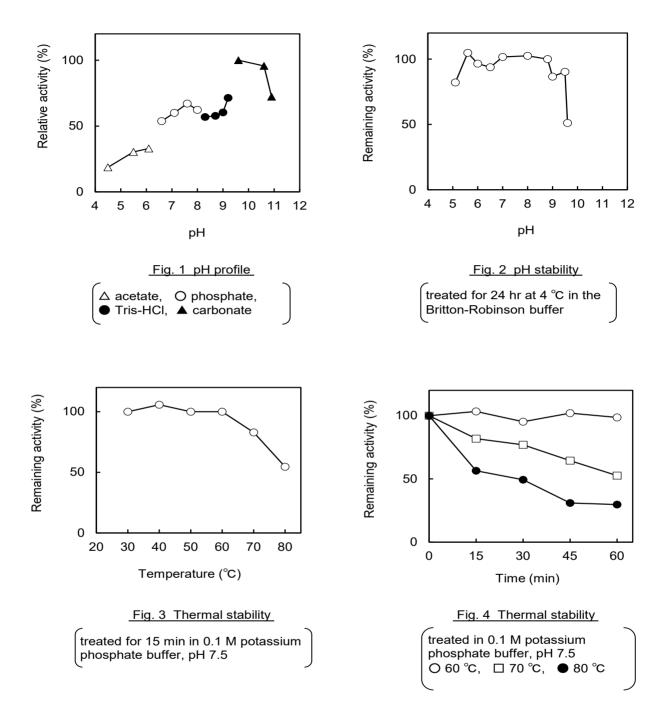
- 2. Incubate at 30 °C for about 3 minutes.
- 3. Add 0.20 mL of Solution V into the cuvette and mix.
- 4. Read absorbance change at 550 nm per minute for the linear portion of curve (Δ Abs•test)*.
- 5. Add 0.005 mL of Solution I in place of enzyme solution and measure the same above 4 (ΔAbs•blank).

*Dilute enzyme solution with 50 mM potassium phosphate buffer, pH 7.5, because the decrease in the initial rate should not fall outside the range of 40 to 60 % for the results to be valid.

Calculation

Volume activity (U/mL) = $\left[\frac{(\Delta Abs \cdot blank)}{(\Delta Abs \cdot test)} - 1\right] \times \frac{601}{1} \times d.f.$ Specific activity (U/mg protein) = Volume activity (U/mL) protein concentration (mg/mL)*

d.f.; dilution factor


*Protein concentration ; determined by Bradford's method

REFERENCE

- 1. Bridgen, J., Harris, J.I., and Kolb, E.; J. Mol. Biol., 105, 333 (1976)
- 2. Brock, C.J., Harris, J.I., and Sato, S.; *ibid.*, **107**, 175 (1976)
- 3. Brock, C.J., and Walker, J.E.; Biochemistry, 19, 2873 (1980)
- 4. Auffret, A.D., Blake, T,J., and Williams, D.H.; Eur. J. Biochem., 113, 333 (1981)
- 5. Atkinson, T., Banks, G.T., Bruton, C.J., Comer, M.J., Jakes, R., Kamalagharan, T., Whitak, A.R., and Winter, G.P.; *J. Appl. Biochem.*, **1**, 247 (1979)

