

POLYNUCLEOTIDE PHOSPHORYLASE (PNPase3)

[EC 2. 7. 7. 8]

from recombinant E. coli

 $RNA_{n+1} + Pi \leftrightarrow RNA_n + Nucleoside diphosphate$

FOR DEPOLYMERIZATION REACTION

SPECIFICATION

State	: Liquid
Specific activity	: more than 2,000 U/mg protein

PROPERTIES

Subunit molecular weight Optimum pH pH stability Thermal stability Effectors : ca. 79,000 : 9.0 - 9.5 (Fig. 1) : 8.0 - 11.0 (Fig. 2) : No detectable decrease in activity up to 55 °C. (Fig. 3, 4) : cations and anions (Fig. 5, 6)

STORAGE

at -20 °C

APPLICATION

The enzyme is useful for the preparation of polyribonucleotide.

ASSAY

Principle

The change in absorbance is measured at 340 nm according to the following reactions.

Poly $A_n + Pi$ <u>PNPase3</u> Poly $A_{n-1} + ADP$ (I) ADP + PEP <u>PK</u> ATP + PyruvatePyruvate + NADH + H⁺ <u>LDH</u> Lactate + NAD⁺ (II)

Unit Definition

One unit of activity is defined as the amount of PNPase that forms 1 μ mol of ADP per hour at 60 °C by depolymerizing of Poly A.

Solutions

(Reaction I)

- I Buffer solution ; 100 mM Tris-HCl, pH 9.5 ((1.212 g Tris + 0.074 g EDTA + 0.014 mL 2mercaptoethanol + 0.610 g MgCl₂·6H₂O + 0.746 g KCl)/80 mL distilled water, adjusted to pH 9.5 with 1 N-HCl and filled up to 100 mL with distilled water)
- II KH₂PO₄ solution ; 65 mM (0.088 g KH₂PO₄/10 mL distilled water)
- Ⅲ polyadenylate (Poly A) solution ; (25 mg Poly A potassium salt/1 mL distilled water; ca. 35 mM based on AMP concentration)

(Reaction II)

- IV Buffer solution ; 100 mM Triethanolamine buffer, pH 7.6 ((9.300 g triethanolamine-HCI + 0.407 g MgCl₂·6H₂O + 0.373 g KCI)/400 mL distilled water, adjusted to pH 7.6 with 1 N-NaOH and filled up to 500 mL with distilled water)
- V NADH solution ; 13.1 mM (0.100 g NADH disodium salt·3H₂O/10 mL distilled water)
- VI Phosphoenolpyruvate (PEP) solution ; 56 mM (0.150 g PEP MCA salt/10 mL distilled water)
- Ⅶ Pyruvate kinase (PK); (from rabbit muscle, Roche Diagnostics K.K., No. 128 155) crystalline suspension in 3.2 M (NH₄)₂SO₄ solution (10 mg/mL) approx. 200 U/mg at 25 °C
- Ⅷ Lactate dehydrogenase (LDH); (from pig heart, Oriental Yeast Co. Ltd., Product Code: LDH-02) ammonium sulfate suspension, approx. 5,000 U/mL at 25 °C

Preparation of Enzyme Solution

Dissolve the lyophilized enzyme with distilled water and dilute to 2 to 150 U/mL with 50 mM Tris-HCl buffer, pH 8.5.

Procedure

(Reaction I)

1. Prepare the following reaction mixture and pipette 0.55 mL of reaction mixture into a test tube.

Solution I	2.50 mL	Solution Ⅲ	1.00 mL
Solution II	1.00 mL	H ₂ O	1.00 mL

- 2. Add 0.10 mL of enzyme solution and mix.
- 3. Incubate at 60 °C for exactly 10 minutes.
- 4. After incubation, add 0.01 mL conc. HCl and mix.
- Centrifuge at 10,000 rpm for 30 seconds. At the same time, repeat the Procedure 1 to 5 using distilled water in place of enzyme solution in Procedure 2 (as blank).

(Reaction II)

6. Prepare the following reaction mixture and pipette 2.50 mL of the reaction mixture into a cuvette. SolutionIV 24.18 mL SolutionVII 0.12 mL

Solution V	0.40 mL	Solution	0.05 mL
Solution VI	0.25 mL		

- 7. Incubate at 30 °C for about 3 minutes.
- 8. Add 0.10 mL of supernatant of Procedure 5 and mix.
- 9. Read absorbance at 340 nm (Abs•test). Repeat the Procedure using blank (Abs•blank).

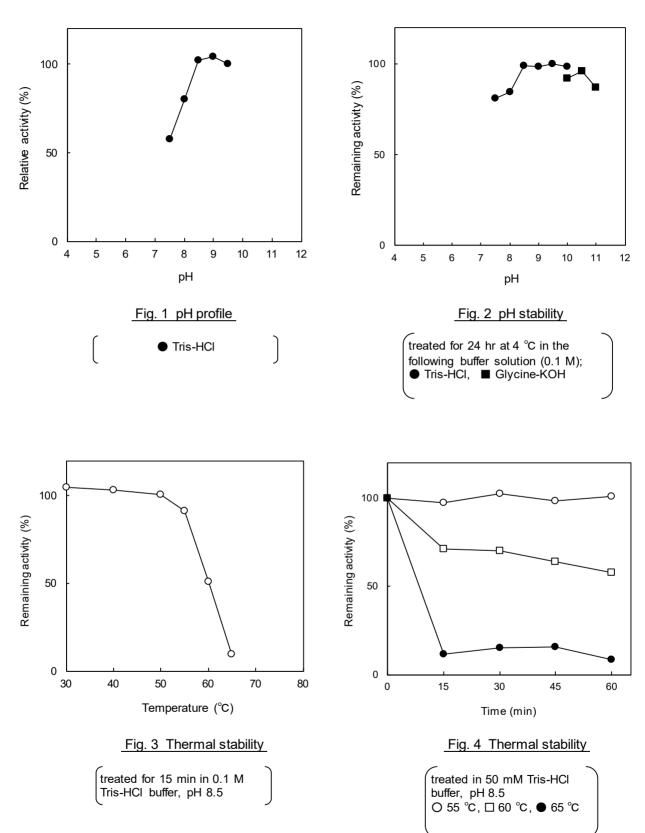
Calculation

Volume activity (U/mL) = ((Abs•blank) - (Abs•test)) X $\frac{2.60 \times 0.65}{6.22 \times 0.10 \times 0.10} X \frac{60}{10} X d.f.$

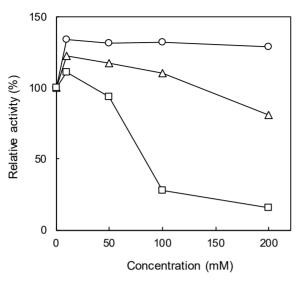
Volume activity (U/mL)

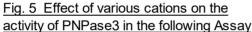
Specific activity (U/mg protein) =

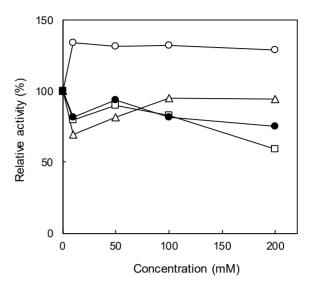
Protein concentration (mg/mL)*


d.f. ; dilution factor

6.22 ; millimolar extinction coefficient of NADH (cm²/µmol) *Protein concentration ; determined by the absorbance at 280 nm (Abs280), where 1 Abs280 = 1 mg/mL


REFERENCES


- 1. Smith, J.C., and Eaton, M.A.W.; Nucleic Acids Research, 1, 1763 (1974)
- 2. Wood, J.N., and Hutchinson, D.W.; ibid., 3, 219 (1976)



Measurement: 0.015 mL of each cation solution, 0.010 mL of enzyme solution and 0.055 mL of reaction mixture were mixed, and reacted at 60 °C. After 10 minutes, the quantity of ADP was determined. O NaCl, Δ KCl, \Box MgCl₂

Fig. 6 Effect of various anions on the activity of PNPase3 in the following Assay

Measurement: 0.015 mL of each anion solution, 0.010 mL of enzyme solution and 0.055 mL of reaction mixture were mixed, and reacted at 60 °C. After 10 minutes, the quantity of ADP was determined. \bigcirc NaCl, \triangle CH₃COONa, \square Na₂SO₄, \blacksquare NaH₂PO₄