

PYRUVATE KINASE (PK2)

[EC 2.7.1.40]

from Recombinant E. coli

ATP + Pyruvate ↔ ADP + Phosphoenolpyruvate

SPECIFICATION : Lyophilized State Specific activity : more than 230 U/mg protein : (as PK activity = 100° %) Contaminants Adenylate kinase < 0.01 % Lactate dehydrogenase < 0.01 % PROPERTIES Subunit molecular weight : ca. 60,000 Optimum pH : 6.0 - 6.5 (Fig. 1) pH stability : 6.0 - 11.0 (Fig. 2) Thermal stability : No detectable decrease in activity up to 60 °C. (Fig. 3, 4) Michaelis constants : (76 mM Imidazole-HCl buffer, pH 7.2, at 30 °C) Phosphoenolpyruvate 1.0 mM ADP 1.5 mM

STORAGE

Stable at -20 °C for at least one year

APPLICATION

The enzyme is useful for diagnostic reagent, for example, ADP determination.

ASSAY

Principle

The change in absorbance is measured at 340 nm according to the following reaction.

ADP + PEP _____ ATP + Pyruvate

Pyruvate + NADH + H⁺ _____ Lactate + NAD⁺

Unit Definition

One unit of activity is defined as the amount of PK2 that forms 1 μ mol of pyruvate per minute at 30 °C.

Solutions

- I Buffer solution ; 100 mM Imidazole-HCl, pH 7.2
- II ADP solution ; 100 mM (0.45 g ADP sodium salt, Sigma-Aldrich A2754/(9.0 mL distilled water + 1.0 mL 1 N NaOH))
- III NADH solution ; 13.1 mM (0.100 g NADH disodium salt·3H₂O/10 mL distilled water)
- IV Phosphoenolpyruvate (PEP) solution ; 56 mM (0.150 g PEP MCA salt/10 mL distilled water)
- V MgCl₂ solution ; 1 M (20.33 g MgCl₂·6H₂O/100 mL distilled water)
- VI KCI solution ; 2.5 M (18.64 g KCI/100 mL distilled water)
- Ⅶ Lactate dehydrogenase (LDH); (from pig heart, Oriental Yeast Co. Ltd., LDH (P.H.)) ammonium sulfate suspension, approx. 5,000 U/mL at 25 °C

Preparation of Enzyme Solution

Dissolve the lyophilized enzyme with distilled water and dilute to 5 to 10 U/mL with 50 mM Tris-HCl buffer, pH 8.5.

Procedure

1. Prepare the following reaction mixture and pipette 3.00 mL of reaction mixture into a cuvette.

Solution I	22.71 mL	Solution V	0.48 mL
Solution II	2.40 mL	Solution VI	0.90 mL
Solution III	0.45 mL	Solution VI	0.06 mL
SolutionIV	3.00 mL		

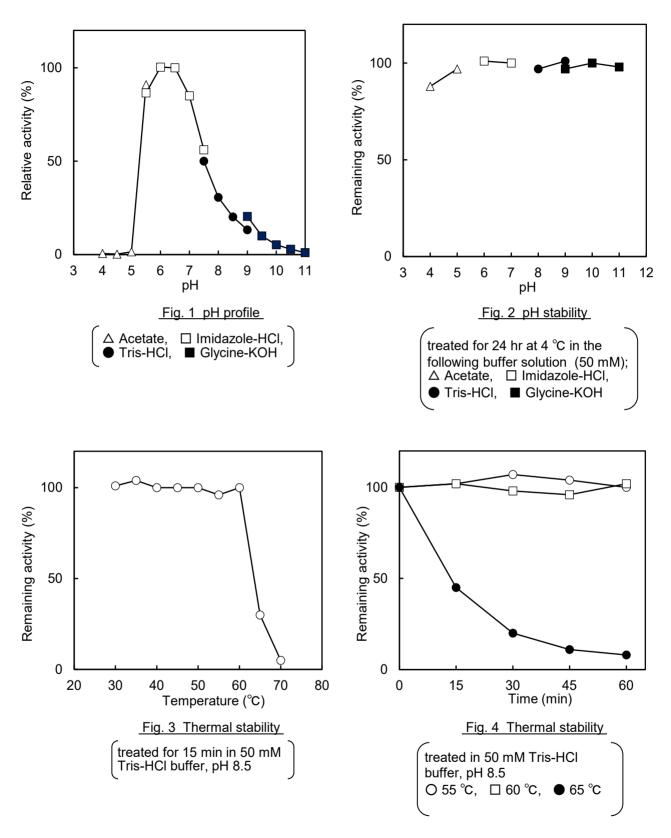
- 2. Incubate at 30 °C for about 3 minutes.
- 3. Add 0.01 mL of enzyme solution into the cuvette and mix.
- 4. Read absorbance change at 340 nm per minute (ΔAbs_{340}) in the linear portion of curve.

Calculation

Volume activity (U/mL) =
$$\frac{(\Delta Abs_{340}) \times (3.00 + 0.01)}{6.22 \times 0.01} \times d.f.$$

Volume activity (U/mL)

Specific activity (U/mg protein) = Protein concentration (mg/mL)*


d.f. ; dilution factor

6.22 ; millimolar extinction coefficient of NADH (cm²/µmol) *Protein concentration ; determined by Bradford's method

REFERENCE

1. Sakai, H., Suzuki, K., and Imahori, K.; J. Biochem., 99, 1157 (1986)

