

PYRUVATE KINASE (PK)

[EC 2.7.1.40]

from Bacillus stearothermophilus

ATP + Pyruvate ↔ ADP + Phosphoenolpyruvate

SPECIFICATION

State : Lyophilized

Specific activity : more than 230 U/mg protein Contaminants : (as PK activity = 100 %)

Adenylate kinase < 0.01 % Lactate dehydrogenase < 0.01 %

PROPERTIES

Molecular weight : ca. 260,000 Subunit molecular weight : ca. 68,000

Optimum pH : 7.0 (Fig. 1) pH stability : 8.0 - 10.0 (Fig. 2)

Isoelectric point : 5.2

Thermal stability : No detectable decrease in activity up to 55 °C. (Fig. 3, 4)

Michaelis constants : (76 mM Imidazole-HCl buffer, pH 7.2, at 30 °C)

Phosphoenolpyruvate 0.6 mM ADP 0.9 mM

STORAGE

Stable at -20 °C for at least one year

APPLICATION

The enzyme is useful for diagnostic reagent, for example, ADP determination.

ASSAY

Principle

The change in absorbance is measured at 340 nm according to the following reaction.

Unit Definition

One unit of activity is defined as the amount of PK that forms 1 µmol of pyruvate per minute at 30 °C.

Solutions

- I Buffer solution; 100 mM Imidazole-HCl, pH 7.2
- II ADP solution ; 100 mM (0.507 g ADP disodium salt- $2H_2O/(9.0$ mL distilled water + 1.0 mL 1 N NaOH))
- III NADH solution ; 13.1 mM (0.100 g NADH disodium salt⋅3H₂O/10 mL distilled water)
- IV Phosphoenolpyruvate (PEP) solution; 56 mM (0.150 g PEP MCA salt/10 mL distilled water)
- V MgCl₂ solution; 1 M (20.33 g MgCl₂·6H₂O/100 mL distilled water)
- VI KCl solution; 2.5 M (18.64 g KCl/100 mL distilled water)
- WI Lactate dehydrogenase (LDH); (from pig heart, Oriental Yeast Co. Ltd., Product Code: LDH-02) ammonium sulfate suspension, approx. 5,000 U/mL at 25 °C

Preparation of Enzyme Solution

Dissolve the lyophilized enzyme with distilled water and dilute to 5 to 10 U/mL with 50 mM Tris-HCl buffer, pH 8.5.

Procedure

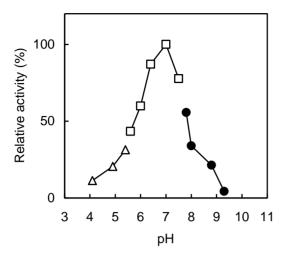
1. Prepare the following reaction mixture and pipette 3.00 mL of reaction mixture into a cuvette.

Solution I	22.71 mL	Solution V	0.48 mL
Solution II	2.40 mL	SolutionVI	0.90 mL
$Solution {\rm 1}\!{\rm I}\!{\rm I}$	0.45 mL	Solution VI	0.06 mL
Solution Ⅳ	3.00 mL		

- 2. Incubate at 30 °C for about 3 minutes.
- 3. Add 0.01 mL of enzyme solution into the cuvette and mix.
- 4. Read absorbance change at 340 nm per minute (ΔAbs₃₄₀) in the linear portion of curve.

Calculation

Volume activity (U/mL) =
$$\frac{(\triangle Abs_{340}) \times (3.00 + 0.01)}{6.22 \times 0.01} \times d.f.$$


d.f.; dilution factor

6.22; millimolar extinction coefficient of NADH (cm²/µmol) *Protein concentration; determined by Bradford's method

REFERENCE

1. Sakai, H., Suzuki, K., and Imahori, K.; J. Biochem., 99, 1157 (1986)

<u>Fig. 1_pH profile</u>

△ acetate, □ imidazole-HCl,
■ Tris-HCl

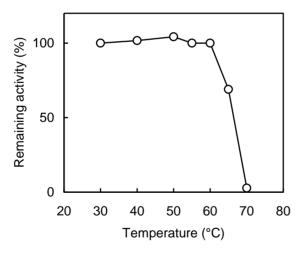


Fig. 3 Thermal stability

(treated for 15 min in 0.1 M
 Tris-HCl buffer, pH 8.5

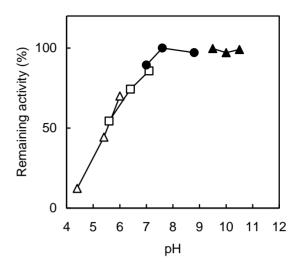


Fig. 2 pH stability

treated for 24 hr at 4 °C in the following buffer solution (0.1 M);

△ acetate, □ imidazole-HCl,

● Tris-HCl, ▲ carbonate

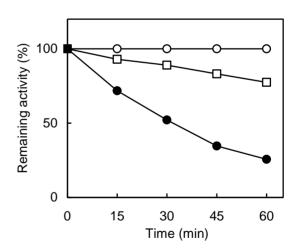


Fig. 4 Thermal stability

(treated in 0.1 M Tris-HCl buffer, pH 8.5
O 55 °C, □ 60 °C, ● 65 °C