

0.27 mM

PHOSPHOGLUCOSE ISOMERASE (PGI)

[EC 5. 3. 1. 9]

from Bacillus stearothermophilus

D-Glucose-6-phosphate ↔ D-Fructose-6-phosphate

SPECIFICATION

State	: Lyophilized	
Specific activity	: more than 400 U/mg protein	
Contaminants	: (as PGI activity = 100 %)	
	Phosphofructokinase	< 0.01 %
	6-Phosphogluconate dehydrogenase	< 0.01 %
	Phosphoglucomutase	< 0.01 %
	NADPH oxidase	< 0.01 %
	Glutathione reductase	< 0.01 %
PROPERTIES		
Molecular weight	: ca. 200,000	
Subunit molecular weight	: ca. 54,000	
Optimum pH	: 9.0 - 10.0	(Fig. 1)
pH stability	: 6.0 - 10.5	(Fig. 2)
Isoelectric point	: 4.2	
Thermal stability	: No detectable decrease in activity up to 60 °C.	(Fig. 3, 4)
Michaelis constants	: (95 mM Tris-HCI buffer, pH 9.0, at 30 °C)	,

Fructose-6-phospate

STORAGE

Stable at -20 °C for at least one year

ASSAY

Principle

The change in absorbance is measured at 340 nm according to the following reactions.

Fructose-6-phosphate _____ Glucose-6-phosphate

Glucose-6-phosphate + NADP⁺ _____ Gluconolactone-6-phosphate + NADPH + H⁺

Unit Definition

One unit of activity is defined as the amount of PGI that forms 1 μ mol of glucose-6-phosphate per minute at 30 °C.

Solutions

- I Buffer solution ; 100 mM Tris-HCl, pH 9.0
- I Fructose-6-phosphate (F6P) solution ; 100 mM (0.310 g F6P disodium salt/10 mL distilled water)
- III NADP⁺ solution ; 22.5 mM (0.188 g NADP⁺ sodium salt 4H₂O/10 mL distilled water)
- IV Glucose-6-phosphate dehydrogenase (G6PDH) ; (from yeast, Roche Diagnostics K.K., No. 127 671) suspension in 3.2 M (NH₄)₂SO₄ solution (10 mg/2 mL) approx. 140 U/mg at 25 °C

Preparation of Enzyme Solution

Dissolve the lyophilized enzyme with distilled water and dilute to 5 to 10 U/mL with 50 mM Tris-HCI buffer, pH 8.5.

Procedure

- 1. Prepare the following reaction mixture and pipette 3.00 mL of reaction mixture into a cuvette.
 - Solution I 28.44 mL Solution III 0.60 mL
 - Solution II 0.90 mL Solution IV 0.06 mL
- 2. Incubate at 30 °C for about 3 minutes.

Specific activity (U/mg protein) = -

- 3. Add 0.01 mL of enzyme solution into the cuvette and mix.
- 4. Read absorbance change at 340 nm per minute (ΔAbs_{340}) in the linear portion of the curve.

Calculation

Volume activity (U/mL) = $\frac{(\Delta Abs_{340}) \times (3.00 + 0.01)}{6.22 \times 0.01} \times d.f.$

Volume activity (U/mL)

Protein concentration (mg/mL)*

d.f.; dilution factor

6.22 ; millimolar extinction coefficient of NADPH (cm²/µmol) *Protein concentration ; determined by Bradford's method

REFERENCE

1. Muramatsu, N., and Nosoh, T.; Arch. Biochem. Biophys., **144**, 245 (1971)

