Thermostable Enzymes for Clinical Chemistry

NIPRO Enzymes

From Zymomonas mobilis

ALCOHOL DEHYDROGENASE (ZM-ADH) GLUCOKINASE (ZM-GIcK) GLUCOSE-6-PHOSPHATE DEHYDROGENASE (ZM-G6PDH)

From Bacillus stearothermophilus

ADENYLATE KINASE (AdK) ALANINE DEHYDROGENASE (AlaDH) ALANINE RACEMASE (AlaR) LEUCINE DEHYDROGENASE (LeuDH) PHOSPHOGLUCOSE ISOMERASE (PGI) SUPEROXIDE DISMUTASE (SOD)

From Others

ACETATE KINASE (AK2) **BILIRUBIN OXIDASE (BOD3) DIAPHORASE3 (DI-3)** DIAPHORASE22 (Di-22) GALACTOSE DEHYDROGENASE (GalDH) GLUCOKINASE2 (GlcK2) GLUCOSE DEHYDROGENASE (GlcDH2) GLYCEROKINASE (GlyK) GLYCEROL-3-PHOSPHATE DEHYDROGENASE (G3PDH) D-LACTATE DEHYDROGENASE (D-LDH) MALATE DEHYDROGENASE (MDH) MUTAROTASE (MRO) PHENYLALANINE DEHYDROGENASE (PheDH) PHOSPHOTRANSACETYLASE (PTA2) POLYNUCLEOTIDE PHOSPHORYLASE (PNPase3) PYRUVATE KINASE (PK2)

ご照会は下記へお願い申し上げます。 ニプロ株式会社 本 社/〒566-8510 大阪府摂津市千里丘新町3番26号 Tel 06-6310-6596 For more information, please contact NIPRO CORPORATION 3-26, Senriokashinmachi, Settsu, Osaka, 566-8510, Japan Phone +81 6 6310 6596 Fax +81 50 3730 4942

e-mail : nipro-web@nipro.co.jp http://www.nipro.co.jp/

Bacillus stearothermophilus is used as a synonym of Geobacillus stearothermophilus.

2024.06

Quality

The Quality Management System of Enzyme Center, NIPRO Corp. has been certified as to meet the requirements of ISO9001 in the scope of design, development and manufacture of enzymes for analytical reagents and industrial use by JAPAN CHEMICAL QUALITY ASSURANCE LTD.

ALCOHOL DEHYDROGENASE (ZM-ADH)

[EC 1 .1 .1 .1]

from Zymomonas mobilis

Alcohol + NAD⁺ \leftrightarrow Aldehyde + NADH + H⁺

SPECIFI	CATION		
	State	: Lyophilized	
	Contaminants	: more than 400 0/mg protein : (as ZM ADH activity = 100 %)	
	Contaminants	Glucose-6-phosphate dehydrogenase	< 0.10 %
		Glucokinase	< 0.02 %
		Pyruvate kinase	< 0.02 %
		NADH oxidase	< 0.01 %
		Lactate dehydrogenase	< 0.01 %
PROPER	RTIES		
	Molecular weight	: ca. 148,000	
	Subunit molecular weight	: ca. 37,000	
	Optimum pH	: 9.5 - 10.0	(Fig. 1)
	pH stability	: 7.0 - 9.0	(Fig. 2)
	Thermal stability	: No detectable decrease in activity up to 40 °C.	(Fig. 3, 4)
	Michaelis constants	: (100 mM Glycine-KOH buffer, pH 9.0, at 30 °C)
		Ethanol	110 mM
		Methanol	350 mM
		NAD ⁺	0.12 mM
		Acetaldehyde	1.66 mM
		NADH	0.03 mM
	Substrate specificity	: Ethanol	100 %
		Methanol	0.05 %
		n-Propanol	42.3 %
		n-Butanoi	0.28 %

STORAGE

Stable at -20 °C for at least six months

APPLICATION

The enzyme is useful for determination of alcohols or aldehydes.

Principle

The change in absorbance is measured at 340 nm according to the following reaction.

Ethanol + NAD⁺ ZM-ADH Acetaldehyde + NADH + H⁺

Unit Definition

One unit of activity is defined as the amount of ZM-ADH that forms 1 μmol of NADH per minute at 30 °C.

Solutions

- I Buffer solution ; 80 mM Glycine-KOH, pH 9.5
- I NAD⁺ solution ; 10 mM (0.0663 g NAD⁺ free acid/10 mL distilled water)
- III Ethanol solution ; Ethanol (96 %)

Preparation of Enzyme Solution

Dissolve the lyophilized enzyme with distilled water and dilute to 5 to 10 U/mL with 50 mM Tris succinate buffer containing 1mg/mL BSA and 0.2 mM CoCl₂, pH 7.0

Procedure

- 1. Prepare the following reaction mixture and pipette 3.00 mL of reaction mixture into a cuvette.
 - Solution I 22.90 mL
 - Solution II 6.00 mL
 - SolutionⅢ 1.10 mL
- 2. Incubate at 30 °C for about 3 minutes.
- 3. Add 0.01 mL of enzyme solution into the cuvette and mix.
- 4. Read absorbance change at 340 nm per minute (ΔAbs_{340}) in the linear portion of curve.

Calculation

Volume activity (U/mL) =
$$\frac{(\Delta Abs_{340}) \times (3.00 + 0.01)}{6.22 \times 0.01} \times d.f.$$

Volume activity (U/mL)

Specific activity (U/mg protein) =

Protein concentration (mg/mL)*

d.f. ; dilution factor

6.22 ; millimolar extinction coefficient of NADH (cm²/µmol) *Protein concentration ; determined by Bradford's method

REFERENCE

1. Neale, A.D., Scopes. R.K., Kelly, J.M., and Wettenhall, R.E.H.; Eur. J. Biochem., 154, 119 (1986)

GLUCOKINASE (ZM-GlcK)

[EC 2. 7. 1. 2]

from Zymomonas mobilis

ATP + D-Glucose ↔ ADP + D-Glucose-6-phosphate

SPECIFICATION

State	: Lyophilized	
Specific activity	: more than 150 U/mg protein	
Contaminants	: (as ZM-GlcK activity = 100 %)	
	Glucose-6-phosphate dehydrogenase	< 0.02 %
	Phosphoglucomutase	< 0.01 %
	6-Phosphogluconate dehydrogenase	< 0.01 %
	Hexose-6-phosphate isomerase	< 0.01 %
	Glutathione reductase	< 0.01 %

PROPERTIES

Molecular weight	: ca. 66,000	
Subunit molecular weight	: ca. 33,000	
Optimum pH	: 7.0 - 8.0	(Fig. 1)
pH stability	: 6.0 - 8.0	(Fig. 2)
Thermal stability	: No detectable decrease in activity up to 40 °C.	(Fig. 3, 4)
Michaelis constants	: (60 mM Phosphate buffer, pH 7.0, at 30 °C)	
	Glucose	0.10 mM
	ATP	0.65 mM
Activator	: Pi	

STORAGE

Stable at -20 °C for at least one year

APPLICATION

The enzyme is useful for diagnostic reagent, for example, glucose determination or CK determination, and for the specific determination of glucose. Tris-HCI buffer is not suitable for the practical use of ZM-GlcK.

Principle

The change in absorbance is measured at 340 nm according to the following reactions.

ATP + Glucose ZM-GlcK ADP + Glucose-6-phosphate

Glucose-6-phosphate + NAD⁺ Gluconolactone-6-phosphate + NADH + H⁺

Unit Definition

One unit of activity is defined as the amount of ZM-GlcK that forms 1 μ mol of glucose-6-phosphate per minute at 30 °C.

Solutions

- I Buffer solution ; 100 mM Triethanolamine NaOH and 3 mM K₂HPO₄, pH 7.5
- II ATP solution ; 100 mM (0.605 g ATP disodium salt·3H₂O/(8.2 mL distilled water + 1.8 mL 1 N-NaOH))
- III MgCl₂ solution ; 1 M (20.33 g MgCl₂·6H₂O/100 mL distilled water)
- IV NAD⁺ solution ; 100 mM (0.663 g NAD⁺ free acid/10 mL distilled water)
- V Glucose solution ; 40mM (0.072 g glucose (anhyd.)/10 mL distilled water)
- VI Glucose-6-phosphate dehydrogenase (G6PDH) ; 2000 U/mL (from *Zymomonas mobilis*, Nipro Corp., Dissolve with Buffer solution I)

Preparation of Enzyme Solution

Dissolve the lyophilized enzyme with distilled water and dilute to 5 to 10 U/mL with 50 mM potassium phosphate buffer containing 1 mg/mL BSA, pH 7.0.

Procedure

1. Prepare the following reaction mixture and pipette 3.00 mL of reaction mixture into a cuvette.

Solution I	20.07 mL	SolutionIV	0.60 mL
Solution II	1.50 mL	Solution V	7.50 mL
Solution III	0.30 mL	Solution VI	0.03 mL

2. Incubate at 30 °C for about 3 minutes.

- 3. Add 0.01 mL of enzyme solution into the cuvette and mix.
- 4. Read absorbance change at 340 nm per minute (ΔAbs_{340}) in the linear portion of curve.

Calculation

Volume activity (U/mL) =
$$\frac{(\Delta Abs_{340}) \times (3.00 + 0.01)}{6.22 \times 0.01} \times d.f.$$

Specific activity (U/mg protein) =

Protein concentration (mg/mL)*

d.f. ; dilution factor

6.22 ; millimolar extinction coefficient of NADH (cm²/µmol) *Protein concentration ; determined by Bradford's method

REFERENCE

1. Scopes. R.K., Testolin, V., Stoter, A., Griffiths-Smith, K., and Algar, E.M.; *Biochem. J.*, **228**, 627 (1985)

GLUCOSE-6-PHOSPHATE DEHYDROGENASE (ZM-G6PDH)

[EC 1. 1. 1. 49]

from Zymomonas mobilis

D-Glucose-6-phosphate + NAD(P)⁺ \leftrightarrow D-Gluconolactone-6-phosphate + NAD(P)H + H⁺

SPECIFICATION		
State	: Lyophilized	
Specific activity	: more than 250 U/mg protein	
Contaminants	: (as ZM-G6PDH activity = 100 %)	
	Glucokinase	< 0.02 %
	Phosphoglucomutase	< 0.01 %
	6-Phosphogluconate dehydrogenase	< 0.02 %
	Hexose-6-phosphate isomerase	< 0.01 %
	Glutathione reductase	< 0.01 %
PROPERTIES		
Molecular weight	: ca. 208,000	
Subunit molecular weight	: ca. 52,000	
Optimum pH	: 8.0	(Fig. 1)
pH stability	: 5.0 - 10.0	(Fig. 2)
Thermal stability	: No detectable decrease in activity up to 50 °C.	(Fig. 3, 4)
Michaelis constants	:(30 mM Tris-HCI buffer, pH 8.0, at 30 °C)	
	Glucose-6-phosphate	0.14 mM
	NADP ⁺	0.02 mM
	NAD ⁺	0.14 mM
Substrate specificity	: NADP ⁺	70 %
	NAD ⁺	100 %

STORAGE

Stable at -20 °C for at least one year

APPLICATION

The enzyme is useful for diagnostic reagent, for example, glucose determination or CK determination, and for the specific determination of glucose.

Principle

The change in absorbance is measured at 340 nm according to the following reaction.

Glucose-6-phosphate + NAD⁺ ZM-G6PDH Gluconolactone-6-phosphate + NADH + H⁺

Unit Definition

One unit of activity is defined as the amount of ZM-G6PDH that forms 1 μ mol of NADH per minute at 30 °C.

Solutions

- I Buffer solution ; 50 mM Tris-HCI, pH 8.0
- I NAD⁺ solution ; 100 mM (0.663 g NAD⁺ free acid/10 mL distilled water)
- Ⅲ Glucose-6-phosphate (G6P) solution ; 33 mM (0.112 g G6P disodium salt 2H₂O/10 mL distilled water)

Preparation of Enzyme Solution

Dissolve the lyophilized enzyme with distilled water and dilute to 5 to 10 U/mL with 50 mM potassium phosphate buffer containing 1 mg/mL BSA, pH 7.0.

Procedure

1. Prepare the following reaction mixture and pipette 3.00 mL of reaction mixture into a cuvette.

Solution I	26.40 mL
Solution II	0.90 mL
Solution 	2 70 ml

- 2. Incubate at 30 °C for about 3 minutes.
- 3. Add 0.01 mL of enzyme solution into the cuvette and mix.
- 4. Read absorbance change at 340 nm per minute (△Abs₃₄₀) in the linear portion of curve.

Calculation

Volume activity (U/mL) = $\frac{(\Delta Abs_{340}) \times (3.00 + 0.01)}{6.22 \times 0.01} \times d.f.$

Volume activity (U/mL)

Specific activity (U/mg protein) = Protein concentration (mg/mL)*

d.f. ; dilution factor

6.22 ; millimolar extinction coefficient of NADH (cm²/µmol) *Protein concentration ; determined by Bradford's method

REFERENCE

 Scopes, R.K., Testolin, V., Stoter, A., Griffiths-Smith, K., and Algar. E.M.; *Biochem. J.*, 228. 627 (1985)

ADENYLATE KINASE (AdK)

[EC 2. 7. 4. 3]

from Bacillus stearothermophilus

ATP + AMP \leftrightarrow 2 ADP

SPECIFICATION State Specific activity Contaminants	 : Lyophilized : more than 200 U/mg protein : (as AdK activity = 100 %) ATPase Phosphoglycerate kinase 	< 0.01 % < 0.10 %
PROPERTIES		
Molecular weight	: ca. 20,000	
Optimum pH	: 6.5	(Fig. 1)
pH stability	: 8.0 - 10.5	(Fig. 2)
Isoelectric point	: 5.0	()
Thermal stability	: No detectable decrease in activity up to 65 °C.	(Fig. 3, 4)
Michaelis constants	: (89 mM Imidazole-HCI buffer, pH 6.5, at 30 °C)	
	ÀTP ,	0.04 mM
	ADP	0.05 mM
	AMP	0.02 mM

STORAGE

Stable at -20 °C for at least one year

APPLICATION

The enzyme is useful for determination of AMP or for system involving ATP regeneration.

Principle

The change in absorbance is measured at 340 nm according to the following reactions.

ATP + AMP \xrightarrow{AdK} 2 ADP 2 ADP + 2PEP \xrightarrow{PK} 2 ATP + 2 Pyruvate 2 Pyruvate + 2 NADH + 2 H⁺ \xrightarrow{LDH} 2 Lactate + 2 NAD⁺

Unit Definition

One unit of activity is defined as the amount of AdK that forms 2 µmol of ADP per minute at 30 °C.

Solutions

- I Buffer solution ; 100 mM Imidazole-HCl, pH 6.5
- I AMP solution ; 50 mM (0.250 g AMP disodium salt 6H₂O/10 mL distilled water)
- III ATP solution ; 100 mM (0.605 g ATP disodium salt⋅3H₂O/(8.2 mL distilled water + 1.8 mL 1 N-NaOH))
- IV NADH solution ; 13.1 mM (0.100 g NADH disodium salt·3H₂O /10 mL distilled water)
- V Phosphoenolpyruvate (PEP) solution ; 56 mM (0.150 g PEP MCA salt/10 mL distilled water)
- VI MgCl₂ solution ; 1 M (20.33 g MgCl₂·6H₂O/100 mL distilled water)
- VII KCI solution ; 2.5 M (18.64 g KCI/100mL distilled water)
- Image: Window Pyruvate kinase (PK); (from rabbit muscle, Roche Diagnostics K.K., No. 128 155) crystalline suspension in 3.2 M (NH₄)₂SO₄ solution (10 mg/mL) approx. 200 U/mg at 25 °C
- IX Lactate dehydrogenase (LDH) ; (from pig heart, Oriental Yeast Co. Ltd., Product Code: LDH-02) ammonium sulfate suspension, approx. 5,000 U/mL at 25 °C

Preparation of Enzyme Solution

Dissolve the lyophilized enzyme with distilled water and dilute to 2.5 to 5 U/mL with 50 mM Tris-HCI buffer, pH 8.5.

Procedure

1. Prepare the following reaction mixture and pipette 3.00 mL of reaction mixture into a cuvette.

Solution I	26.70 mL	SolutionVI	0.60 mL
Solution II	0.24 mL	Solution VI	1.20 mL
Solution Ⅲ	0.30 mL	Solution	0.09 mL
Solution IV	0.60 mL	SolutionIX	0.09 mL
Solution V	0.18 mL		

- 2. Incubate at 30 °C for about 3 minutes.
- 3. Add 0.01 mL of enzyme solution into the cuvette and mix.
- 4. Read absorbance change at 340 nm per minute (ΔAbs₃₄₀) in the linear portion of curve.

Calculation

Volume activity (U/mL) =
$$\frac{(\Delta Abs_{340}) \times (3.00 + 0.01)}{2 \times 6.22 \times 0.01} \times d.f.$$

Specific activity (U/mg protein) = _____

Protein concentration (mg/mL)*

- d.f.; dilution factor
- 2 ; according to the reaction that forms 2 μmol of ADP, one unit of activity of Adk is defined to form 2 μmol of ADP.

6.22 ; millimolar extinction coefficient of NADH (cm²/µmol) *Protein concentration ; determined by Bradford's method

REFERENCE

1. Imahori, K., Nakajima, H., Nagata, K., and Iwasaki, T.; *Seikagaku*, **53**, 829 (1981)

ALANINE DEHYDROGENASE (AlaDH)

[EC 1. 4. 1. 1]

from Bacillus stearothermophilus

L-Alanine + NAD⁺ + H₂O \leftrightarrow Pyruvate + NH₄⁺ + NADH

SPECIFICATION		
State Specific activity Contaminants	: Lyophilized : more than 10 U/mg protein : (as AlaDH activity = 100 %)	
	NADH oxidase	< 0.01 %
	Lactate dehydrogenase	< 0.10 %
PROPERTIES		
Molecular weight	: ca. 230,000	
Subunit molecular weight	: ca. 38,000	
Optimum pH	: 10.4	(Fig. 1)
pH stability	: 7.0 - 11.5	(Fig. 2)
Thermal stability	: No detectable decrease in activity up t	o 70 °C. (Fig. 3, 4)
Michaelis constants	: (125 mM Glycine-NaOH buffer, pH 10.	.5, at 30 °C)
	L-Alanine	10.0 mM
	NAD ⁺	0.26 mM
Substrate specificity	: L-Alanine	100 %
	L-Leucine	0 %
	L-Isoleucine	0 %

STORAGE

Stable at -20 °C for at least one year

APPLICATION

The enzyme is useful for determination of L-alanine.

Principle

The change in absorbance is measured at 340 nm according to the following reaction.

L-Alanine + NAD⁺ + H₂O \longrightarrow Pyruvate + NH₄⁺ + NADH

Unit Definition

One unit of activity is defined as the amount of AlaDH that forms 1 μmol of NADH per minute at 30 °C.

Solutions

- I Buffer solution ; 250 mM Glycine-NaOH, pH 10.5
- II L-Alanine solution ; 150 mM (1.336 g L-alanine/80 mL distilled water, adjusted to pH 10.5 with 1 N-NaOH and filled up to 100 mL with distilled water)
- III NAD⁺ solution ; 100 mM (0.663 g NAD⁺/ 10 mL with distilled water)

Preparation of Enzyme Solution

Dissolve the lyophilized enzyme with distilled water and dilute to 5 to 10 U/mL with 100 mM glycine - NaOH buffer, pH 9.5.

Procedure

1. Prepare the following reaction mixture and pipette 3.00 mL of reaction mixture into a cuvette.

Solution I	15.00 mL	Solution III	1.50 mL
Solution II	10.00 mL	H ₂ O	3.50 mL

- 2. Incubate at 30 °C for about 3 minutes.
- 3. Add 0.01 mL of enzyme solution into the cuvette and mix.
- 4. Read absorbance change at 340 nm per minute (ΔAbs_{340}) in the linear portion of curve.

Calculation

Volume activity (U/mL) =
$$\frac{(\Delta Abs_{340}) \times (3.00 + 0.01)}{6.22 \times 0.01} \times d.f.$$

Volume activity (U/mL)

Specific activity (U/mg protein) = Protein concentration (mg/mL)*

d.f. ; dilution factor

6.22 ; millimolar extinction coefficient of NADH (cm²/µmol) *Protein concentration ; determined by Bradford's method

REFERENCE

1. Sakamoto, Y., Nagata, S., Esakl, N., Tanaka, H. and Soda, K.; J. Ferment. Bioeng., 69, 154 (1990)

ALANINE RACEMASE (AlaR)

[EC 5. 1. 1. 1]

from Bacillus stearothermophilus

D-Alanine ↔ L-Alanine

SPECIFICATION

State Specific activity Contaminants	: Liquid : more than 950 U/mg protein : (as AlaR activity = 100 %) Lactate dehydrogenase	< 0.01 %
	NADH oxidase	< 0.01 % < 0.01 %
PROPERTIES Molecular weight	: ca. 78,000	
Subunit molecular weight Optimum pH	: ca. 39,000 : 10.5 - 12.0	(Fig. 1)
pH stability	: 5.5 - 11.0	(Fig. 2)
Thermal stability Michaelis constants	: No detectable decrease in activity up to 70 °C. : (100 mM Carbonate buffer, pH 10.5, at 30 °C)	(Fig. 3, 4)
Substrate specificity	D-Alanine :	31 mM

STORAGE

Stable at least one year at -25 °C.

Principle

The change in absorbance is measured at 340 nm according to the following reactions.

D-Alanine AlaR L-Alanine

L-Alanine + NAD⁺ + H₂O <u>AlaDH</u> Pyruvate + NH₄⁺ + NADH

Unit Definition

One unit of activity is defined as the amount of AlaR that forms 1 μ mol of L-alanine per minute at 30 °C.

Solutions

- I Buffer solution ; 200 mM Sodium hydrogencarbonate, pH 10.5
- I D-Alanine solution ;1 M (0.891 g D-alanine/10 mL distilled water)
- III NAD⁺ solution ; 100 mM (0.663 g NAD⁺/10 mL distilled water)
- IV L-Alanine dehydrogenase (AlaDH) ; 1000 U/mL (from *Bacillus stearothermophilus*, Nipro Corp., Dissolve with distilled water)

Preparation of Enzyme Solution

Dissolve the lyophilized enzyme with distilled water and dilute to 5 to 10 U/mL with 50 mM potassium phosphate buffer, pH 7.5.

Procedure

1. Prepare the following reaction mixture and pipette 3.00 mL of reaction mixture into a cuvette.

Solution I	16.50 mL	SolutionIV	1.50 mL
Solution II	3.00 mL	H ₂ O	8.25 mL
Solution III	0.75 mL		

- 2. Incubate at 30 °C for about 3 minutes.
- 3. Add 0.01 mL of enzyme solution into the cuvette and mix.
- 4. Read absorbance change at 340 nm per minute (△Abs₃₄₀) in the linear portion of curve.

Calculation

Volume activity (U/mL) =
$$\frac{(\Delta Abs_{340}) \times (3.00 + 0.01)}{6.22 \times 0.01} \times d.f.$$

Volume activity (U/mL)

Specific activity (U/mg protein) = Protein concentration (mg/mL)*

d.f. ; dilution factor

6.22 ; millimolar extinction coefficient of NADH (cm²/µmol) *Protein concentration ; determined by Bradford's method

REFERENCE

1. Inagaki, K., Tanizawa, K., Badet, B., Walsh, C.T., Tanaka, H., and Soda, K.; *Biochemistry*, **25**, 3268 (1986)

LEUCINE DEHYDROGENASE (LeuDH)

[EC 1. 4. 1. 9]

from Bacillus stearothermophilus

L-Leucine + NAD⁺ + H₂O $\leftrightarrow \alpha$ -Ketoisocaproate+ NH₄⁺ + NADH

SPECIFICATION		
State Specific activity Contaminants	 : Lyophilized : more than 40 U/mg protein : (as LeuDH activity = 100 %) NADH oxidase Lactate dehydrogenase 	< 0.01 % < 0.01 %
PROPERTIES		
Molecular weight	: ca. 300,000	
Subunit molecular weight	: ca. 49,000	
Optimum pH	: 10.6	(Fig. 1)
pH stability	: 6.0 - 11.5	(Fig. 2)
Thermal stability	: No detectable decrease in activity up to 60 °C	. (Fig. 3, 4)
Michaelis constants	onstants : (125 mM Sodium phosphate buffer, pH 10.5, at 30 °C)	
	L-Leucine	3.4 mM
	NAD ⁺	0.3 mM
Substrate specificity	: L-Leucine	100 %
	L-Valine	86 %
	L-Isoleucine	73 %

STORAGE

Stable at -20 °C for at least one year

APPLICATION

The enzyme is useful for determination of L-leucine, L-valine or L-isoleucine.

Principle

The change in absorbance is measured at 340 nm according to the following reaction.

L-Leucine + NAD⁺ + H₂O $_$ LeuDH $_$ α -Ketoisocaproate + NH₄⁺ + NADH

Unit Definition

One unit of activity is defined as the amount of LeuDH that forms 1 μmol of NADH per minute at 30 °C.

Solutions

- I Buffer solution ; 250 mM Sodium phosphate, pH 10.5
- II L-Leucine solution ; 60 mM (0.787 g L-leucine/80 mL distilled water, adjusted to pH 10.5 with 1 N-NaOH and filled up to 100 mL with distilled water)
- III NAD⁺ solution ; 100mM (0.663 g NAD⁺/ 10mL with distilled water)

Preparation of Enzyme Solution

Dissolve the lyophilized enzyme with distilled water and dilute to 5 to 10 U/mL with 100 mM sodium phosphate buffer, pH 9.5.

Procedure

1. Prepare the following reaction mixture and pipette 3.00 mL of reaction mixture into a cuvette,

Solution I	15.00 mL	Solution III	0.93 mL
Solution II	10.00 mL	H ₂ O	4.07 mL

- 2. Incubate at 30°C for about 3 minutes.
- 3. Add 0.01 mL of enzyme solution into the cuvette and mix.
- 4. Read absorbance change at 340 nm per minute (ΔAbs_{340}) in the linear portion of curve.

Calculation

Volume activity (U/mL) =
$$\frac{(\Delta Abs_{340}) \times (3.00 + 0.01)}{6.22 \times 0.01} \times d.f.$$

Volume activity (U/mL)

Specific activity (U/mg protein) =

Protein concentration (mg/mL)*

d.f. ; dilution factor

6.22 ; millimolar extinction coefficient of NADH (cm²/µmol) *Protein concentration ; determined by Bradford's method

REFERENCE

1. Ohshima, T., Nagata, S., and Soda, K.; Arch. Microbiol., 141, 407 (1985)

0.27 mM

PHOSPHOGLUCOSE ISOMERASE (PGI)

[EC 5. 3. 1. 9]

from Bacillus stearothermophilus

D-Glucose-6-phosphate ↔ D-Fructose-6-phosphate

SPECIFICATION

State	: Lyophilized	
Specific activity	: more than 400 U/mg protein	
Contaminants	: (as PGI activity = 100 %)	
	Phosphofructokinase	< 0.01 %
	6-Phosphogluconate dehydrogenase	< 0.01 %
	Phosphoglucomutase	< 0.01 %
	NADPH oxidase	< 0.01 %
	Glutathione reductase	< 0.01 %
PROPERTIES		
Molecular weight	: ca. 200,000	
Subunit molecular weight	: ca. 54,000	
Optimum pH	: 9.0 - 10.0	(Fig. 1)
pH stability	: 6.0 - 10.5	(Fig. 2)
Isoelectric point	: 4.2	
Thermal stability	: No detectable decrease in activity up to 60 °C.	(Fig. 3, 4)
Michaelis constants	: (95 mM Tris-HCI buffer, pH 9.0, at 30 °C)	,

Fructose-6-phospate

STORAGE

Stable at -20 °C for at least one year

Principle

The change in absorbance is measured at 340 nm according to the following reactions.

Fructose-6-phosphate _____ Glucose-6-phosphate

Glucose-6-phosphate + NADP⁺ _____ Gluconolactone-6-phosphate + NADPH + H⁺

Unit Definition

One unit of activity is defined as the amount of PGI that forms 1 μ mol of glucose-6-phosphate per minute at 30 °C.

Solutions

- I Buffer solution ; 100 mM Tris-HCl, pH 9.0
- I Fructose-6-phosphate (F6P) solution ; 100 mM (0.310 g F6P disodium salt/10 mL distilled water)
- III NADP⁺ solution ; 22.5 mM (0.188 g NADP⁺ sodium salt 4H₂O/10 mL distilled water)
- IV Glucose-6-phosphate dehydrogenase (G6PDH) ; (from yeast, Roche Diagnostics K.K., No. 127 671) suspension in 3.2 M (NH₄)₂SO₄ solution (10 mg/2 mL) approx. 140 U/mg at 25 °C

Preparation of Enzyme Solution

Dissolve the lyophilized enzyme with distilled water and dilute to 5 to 10 U/mL with 50 mM Tris-HCI buffer, pH 8.5.

Procedure

- 1. Prepare the following reaction mixture and pipette 3.00 mL of reaction mixture into a cuvette.
 - Solution I 28.44 mL Solution III 0.60 mL
 - Solution II 0.90 mL Solution IV 0.06 mL
- 2. Incubate at 30 °C for about 3 minutes.

Specific activity (U/mg protein) = -

- 3. Add 0.01 mL of enzyme solution into the cuvette and mix.
- 4. Read absorbance change at 340 nm per minute (ΔAbs_{340}) in the linear portion of the curve.

Calculation

Volume activity (U/mL) = $\frac{(\Delta Abs_{340}) \times (3.00 + 0.01)}{6.22 \times 0.01} \times d.f.$

Volume activity (U/mL)

Protein concentration (mg/mL)*

d.f.; dilution factor

6.22 ; millimolar extinction coefficient of NADPH (cm²/µmol) *Protein concentration ; determined by Bradford's method

REFERENCE

1. Muramatsu, N., and Nosoh, T.; Arch. Biochem. Biophys., **144**, 245 (1971)

SUPEROXIDE DISMUTASE (SOD)

[EC 1.15.1.1]

from Bacillus stearothermophilus

 $O_2^- + O_2^- + 2H^+ \leftrightarrow O_2 + H_2O_2$

SPECIFICATION

State Specific activity Contaminants	: Lyophilized : more than 9,000 U/mg protein : (as SOD activity = 100 %) Catalase	< 0.01 %
PROPERTIES		
Molecular weight	: ca. 50,000	
Subunit molecular weight	: ca. 25,000	
Metal content	:1.5 g atoms of Mn per mole of enzyme	
Optimum pH	: 9.5	(Fig. 1)
pH stability	: 6.0 - 9.0	(Fig. 2)
Isoelectric point	: 4.5	() /
Thermal stability	: No detectable decrease in activity up to 60 °C.	(Fig. 3, 4)

STORAGE

Stable at -20 °C for at least one year

APPLICATION

The enzyme is useful for medicine, cosmetic material and nutrition or antioxidant.

Principle

To determine the enzyme activity of cytochrome c reduction is measured by the following reactions.

Xanthine + O_2 Xanthine oxidase Urate + O_2^- + H_2O_2 $O_2^ O_2^ O_2^$

Unit Definition

One unit of activity is defined as the amount of SOD required to inhibit the rate of reduction of cytochrome C by 50 % at 30 °C.

Solutions

- I Buffer solution ; 75 mM Potassium phosphate buffer, pH 7.8
- I Xanthine solution ; 0.75 mM (0.010 g xanthine/50 mL N/250 NaOH)
- II Cytochrome c solution : 0.15 mM (0.019 g cytochrome c/10 mL distilled water. Sigma-Aldrich Co., No. C-2506, from horse heart)
- IV EDTA solution ; 1.5 mM (0.028 g EDTA disodium salt 2H₂O/50 mL distilled water)
- V Xanthine oxidase (XOD); (from buttermilk, Sigma-Aldrich Co., No. X-1875) suspension in 2.3 M (NH₄)₂SO₄ solution is diluted to 0.04 U/mL with distilled water. (prepare freshly)

Preparation of Enzyme Solution

Dissolve the lyophilized enzyme with distilled water and dilute to approx. 600 U/mL with 50 mM potassium phosphate buffer, pH 7.5.

Procedure

1. Prepare the following reaction mixture and pipette 2.80 mL of reaction mixture and 0.005 mL of enzyme solution into a cuvette.

Solution I	22.00 mL	Solution III	2.00 mL
Solution II	2.00 mL	SolutionIV	2.00 mL

- 2. Incubate at 30 °C for about 3 minutes.
- 3. Add 0.20 mL of Solution V into the cuvette and mix.
- 4. Read absorbance change at 550 nm per minute for the linear portion of curve (Δ Abs•test)*.
- 5. Add 0.005 mL of Solution I in place of enzyme solution and measure the same above 4 (ΔAbs•blank).

*Dilute enzyme solution with 50 mM potassium phosphate buffer, pH 7.5, because the decrease in the initial rate should not fall outside the range of 40 to 60 % for the results to be valid.

Calculation

Volume activity (U/mL) = $\left[\frac{(\Delta Abs \cdot blank)}{(\Delta Abs \cdot test)} - 1\right] \times \frac{601}{1} \times d.f.$ Specific activity (U/mg protein) = Volume activity (U/mL) protein concentration (mg/mL)*

d.f.; dilution factor

*Protein concentration ; determined by Bradford's method

REFERENCE

- 1. Bridgen, J., Harris, J.I., and Kolb, E.; J. Mol. Biol., 105, 333 (1976)
- 2. Brock, C.J., Harris, J.I., and Sato, S.; *ibid.*, **107**, 175 (1976)
- 3. Brock, C.J., and Walker, J.E.; Biochemistry, 19, 2873 (1980)
- 4. Auffret, A.D., Blake, T,J., and Williams, D.H.; Eur. J. Biochem., 113, 333 (1981)
- 5. Atkinson, T., Banks, G.T., Bruton, C.J., Comer, M.J., Jakes, R., Kamalagharan, T., Whitak, A.R., and Winter, G.P.; *J. Appl. Biochem.*, **1**, 247 (1979)

ACETATE KINASE (AK2)

[EC 2. 7. 2. 1]

from recombinant E. coli

ATP + Acetate ↔ ADP + Acetylphosphate

SPECIFI	CATION		
	State	: Lyophilized	
	Specific activity	:more than 1,100 U/mg protein	
	Contaminants	: (as AK2 activity = 100 %)	
		Lactate dehydrogenase	< 0.01 %
		Adenylate kinase	< 0.01 %
		NADH oxidase	< 0.01 %
		GOT	< 0.01 %
		GPT	< 0.01 %
PROPER	RTIES		
	Molecular weight	: ca. 172.000	
	Subunit molecular weight	: ca. 39,400	
	Optimum pH	: 6.0	(Fig. 1)
	pH stability	: 6.0 - 11.0	(Fig. 2)
	Thermal stability	: No detectable decrease in activity up to 65 °C.	(Fig. 3, 4)
Μ	Michaelis constants	: (57 mM Imidazole-HCI buffer, pH 7.2, at 30 °C)	,
		Acetate	130 mM
		Acetylphosphate	3.3 mM
		ATP	5.4 mM
		ADP	0.6 mM
	Substrate specificity	: Acetate	100 %
		Formate	0 %
		Propionate	4 %
		Butyrate	1 %
		Oxalate	0 %
		Malate	0 %
		Glycine	0 %
	Activator	: Fructose-1,6-bisphosphate	

STORAGE

Stable at -20 °C for at least one year

Principle

The change in absorbance is measured at 340 nm according to the following reactions.

Unit Definition

One unit of activity is defined as the amount of AK that forms 1 µmol of ADP per minute at 30 °C.

Solutions

- I Buffer solution ; 100 mM Imidazole-HCl, pH 7.2
- II ATP solution ; 100 mM (0.605 g ATP disodium salt·3H₂O/(8.2 mL distilled water + 1.8 mL 1 N-NaOH))
- II Phosphoenolpyruvate (PEP) solution ; 56 mM (0.150 g PEP MCA salt/10 mL distilled water)
- IV NADH solution ; 13.1 mM (0.100 g NADH disodium salt·3H₂O/10 mL distilled water)
- V MgCl₂ solution ; 1 M (20.33 g MgCl₂·6H₂O /100 mL distilled water)
- VI KCI solution ; 2.5 M (18.64 g KCI/100 mL distilled water)
- Ⅶ Pyruvate kinase (PK); (from rabbit muscle, Roche Diagnostics K.K., No. 128 155) crystalline suspension in 3.2 M (NH₄)₂SO₄ solution (10 mg/mL) approx. 200 U/mg at 25 °C
- I Lactate dehydrogenase (LDH); (from pig heart, Oriental Yeast Co. Ltd., Product Code: LDH-02) ammonium sulfate suspension, approx. 5,000 U/mL at 25 °C
- X Sodium acetate solution ; 2 M (27.22 g sodium acetate 3H₂O/100 mL distilled water)

Preparation of Enzyme Solution

Dissolve the lyophilized enzyme with distilled water and dilute to 5 to 10 U/mL with 50 mM potassium phosphate buffer, pH 7.5.

Procedure

1. Prepare the following reaction mixture and pipette 2.4 mL of reaction mixture into a cuvette.

Solution I	16.92 mL
Solution II	3.00 mL
Solution III	1.80 mL
Solution IV	0.60 mL

Solution V 0.60 mL Solution VI 0.90 mL Solution VI 0.12 mL Solution VI 0.06 mL

- 2. Incubate at 30 °C for about 3 minutes.
- 3. Add 0.60 mL of Solution IX and 0.01 mL of enzyme solution into the cuvette and mix.
- 4. Read absorbance change at 340 nm per minute (ΔAbs_{340}) in the linear portion of curve.

Calculation

Volume activity (U/mL) = $\frac{(\Delta Abs_{340}) \times (3.00 + 0.01)}{6.22 \times 0.01} \times d.f.$

Volume activity (U/mL)

Specific activity (U/mg protein) =

Protein concentration (mg/mL)*

d.f. ; dilution factor

6.22 ; millimolar extinction coefficient of NADH (cm²/µmol)

*Protein concentration ; determined by Bradford's method

REFERENCE

- 1. Nakajima, H., Suzuki, K., and Imahori, K. ; J. Biochem., 84, 193 (1978)
- 2. Nakajima, H., Suzuki, K., and Imahori, K. ; *ibid.*, 84, 1139 (1978)
- 3. Nakajima, H., Suzuki, K., and Imahori, K. ; *ibid.*, 86, 1169 (1979)

BILIRUBIN OXIDASE (BOD3)

[EC 1.3.3.5]

from Trachyderma tsunodae

2 Bilirubin + $O_2 \rightarrow 2$ Biliverdin + 2 H₂O

SPECIFI	CATION State Specific activity	: Lyophilized : more than 100) U/mg protein		
PROPER	RTIES				
	Molecular weight	: ca. 60,000	(SDS-electrophoresis)		
		: ca. 80,000	(Gel filtration)		
	Optimum pH	: 5.0		(Fig	. 1)
	pH stability	: 4.0 – 11.0	(4 °C, 24 hr)	(Fig	. 2)
	Isoelectric point (calculation)	: 3.8			-
	Optimum temperature	: 65 – 80 °C		(Fig	. 3)
	Thermal stability	: No detectable	decrease in activity up to 50 °C.	(pH 7.0) (Fig	. 4, 5)
	Michaelis constants	: See table 1			-
	Substrate specificity	: See table 1			

STORAGE

Stable at -20 °C for one year

APPLICATION

The enzyme is useful for enzymatic determination of bilirubin. It could be used as a cathode catalyst in biofuel cells.

Principle

The change in absorbance is measured at 500 nm according to the following reaction.

Phenol + $\frac{1}{2}O_2$ + H₂O $\xrightarrow{BOD3}$ Quinone and/or Phenoxy radical + H₂O₂ 2 H₂O₂ + 4-Aminoantipyrine + Phenol \xrightarrow{POD} Quinoneimine + 4 H₂O

Unit Definition

One unit of activity is defined according to the calculation formula below.

Solutions

- I Buffer solution ; 300 mM Potassium phosphate buffer, pH7.0
- II 4-Aminoantipyrine (4-AA) solution ; 24.6 mM (0.25 g 4-AA / 50 mL distilled water)
- III Phenol solution ; 420 mM (1.98 g phenol/50mL distilled water)
- IV Peroxidase^{*1} (POD) solution ; 240 U/mL (2,400 U/10mL distilled water) *1POD: TOYOBO Co., LTD. Grade Ⅲ #PEO-302

Preparation of Enzyme Solution

Dissolve the lyophilized enzyme with distilled water and dilute to 15 to 60 U/mL with 10 mM potassium phosphate buffer, pH 7.0 containing 0.1 % BSA.

Procedure

1. Prepare the following reaction mixture and pipette 0.90 mL of reaction mixture into a cuvette.

Solution I	4.00 mL
Solution II	0.40 mL
Solution III	0.40 mL
SolutionIV	0.40 mL
H ₂ O	6.40 mL

- 2. Incubate at 37 °C for about 3 minutes.
- 3. Add 0.005 mL of enzyme solution into the cuvette and mix.
- Read absorbance change at 500 nm per minute (∆Abs (test)) in linear portion of curve. Repeat the procedure 3 using distilled water in place of enzyme solution, and ∆Abs (blank) is obtained.

Calculation

Volume activity ($1/m$) = $\frac{(\Delta Abs)}{m}$	(test) - ∆Abs (blank)) X (0.90 + 0.005)	_ Y d f
	11.11 X 0.005 X 1/20	– A u.i.
Specific activity (Ll/ma protein) -	Volume activity (U/mL)	
Specific activity (0/mg protein) -	Protein concentration (mg/mL)*2	

- d.f. ; dilution factor
- 11.11 ; millimolar extinction coefficient of quinoneimine dye at 500 nm (cm²/µmol)

1/20 ; coefficient of transformation for internal unit definition

*²Protein concentration ; determined by Bradford's method

Table 1. Substrate specificity of BOD3

	Phenol	ABTS	Bilirubin C	Bilirubin F
Optimum pH	5.0	4.0	6.0	6.0
Michaelis constants (µM)	41	39	26	26
Relative activity (%)	100	427	36	8
Wavelength for Measurement (nm)	500	405	450	450
Extinction Coefficient (cm²/µmol)	11.11	29	74	32

Michaelis constants and activity of phenol were defined at pH 7.0. They were defined at each optimum pH when the substrate was ABTS, Bilirubin C, or Bilirubin F,.

DIAPHORASE 3 (DI-3)

[EC 1. 6. 99. -]

from recombinant E. coli

 $NAD(P)H + Acceptor(ox.) + H^+ \leftrightarrow NAD(P)^+ + Acceptor(red.)$

SPECIFICATION		
State	: Lyophilized	
Specific activity	:more than 1,000 U/mg protein	
Contaminants	: (as Diaphorase activity = 100 %)	
	Adenylate kinase	< 0.01 %
	NADH oxidase	< 0.01 %
PROPERTIES		
Subunit molecular weight	: ca. 20,000 (SDS-electrophoresis)	
Optimum pH	: 8.0	(Fig. 1)
pH stability	: 7.5 - 9.5	(Fig. 2)
Isoelectric point	: 4.7	()
Thermal stability	: No detectable decrease in activity up to 60 °C.	(Fig. 3, 4)
Michaelis constants	: See Table 1	

STORAGE

Stable at -20 to 5 °C for one year

APPLICATION

The enzyme is useful for the measurement of various dehydrogenase reactions in visible spectral range.

Principle

The change in absorbance is measured at 600 nm according to the following reaction.

NAD(P)H + DCIP(ox.) + H⁺ \longrightarrow NAD(P)⁺ + DCIP(red.)

Unit Definition

One unit of activity is defined as the amount of DI-3 that reduces 1 μmol of DCIP per minute at 30 °C.

Solutions

- I Buffer solution ; 500 mM Tris-HCl, pH 8.5
- I NADH solution ; 13.1 mM (0.100 g NADH disodium salt-3H₂O/10 mL distilled water)
- III 2,6-Dichlorophenolindophenol (DCIP) solution ; 1.2 mM (2.0 mg DCIP sodium salt·2H₂O/5mL distilled water) (prepare freshly)

Preparation of Enzyme Solution

Dissolve the lyophilized enzyme with distilled water and dilute to 1.0 to 2.0 U/mL with 50 mM potassium phosphate buffer, pH 7.5.

Procedure

1. Prepare the following reaction mixture and pipette 2.28 mL of reaction mixture and 0.12 mL of Solution Ⅲ into a cuvette.

Solution I	3.00 mL
Solution II	2.28 mL
H ₂ O	23.22 mL

- 2. Incubate at 30 °C for about 3 minutes.
- 3. Add 0.008 mL of enzyme solution into the cuvette and mix.
- 4. Read absorbance change at 600 nm per minute (△Abs(test)) in linear portion of curve. Repeat the Procedure 3 using distilled water in place of enzyme solution, and △Abs(blank) is obtained.

Calculation

Volume activity (U/mL) = $\frac{(\triangle Abs \text{ (test)} - \triangle Abs \text{ (blank)}) \text{ X } (2.40 + 0.008)}{19 \text{ X } 0.008} \text{ X d.f.}$

Specific activity (U/mg protein) = _____

Protein concentration (mg/mL)*

d.f. ; dilution factor

19 ; millimolar extinction coefficient of DCIP (cm²/µmol)
 *Protein concentration ; determined by Bradford's method

REFERENCE

1. Mains, I., Power, D.M., Thomas, E.W. and Buswell J. A.; *Biochem. J.*, **191**, 457 (1980)

Acceptor		DCIP*1	NTB ^{*2}	MTT ^{*3}	
Km Acceptor	(mM)	0.02	0.15	0.9	
Km ^{NADH}	(mM)	0.37	0.01	0.05	
Km ^{NADPH}	(mM)	32.7	0.31	2.0	
Optimum pH		8.0	10	8.0	
Assay Mixture	9	Tris-HCI (pH 8.5) 50 mM NAD(P)H 1 mM DCIP 0.06 mM	TEA (pH 7.0) 50 mM NAD(P)H 1 mM NBT 0.5 mM Triton X-100 0.1 %	TEA (pH 7.0) 50 mM NAD(P)H 1 mM MTT 0.5 mM Triton X-100 0.5 %	
Wavelength for Measuremen	or t (nm)	600	550	565	
Extinction Co (cm	efficient ² /µmol)	19	12.4 20		

Table 1. SUBSTRATE SPECIFICITY OF DIAPHORASE

*1 2,6-Dichlorophenolindophenol

*2 Nitrotetrazolium Blue

*3 Thiazolyl Blue Tetrazolium Bromide

pH profiles of DI-3 (Acceptor; NTB or MTT)

DIAPHORASE 22 (Di-22)

[EC 1. 8. 1. 4]

from recombinant E.coli

NADH + Acceptor(ox.) + $H^+ \leftrightarrow NAD^+$ + Acceptor(red.)

SPECIFICATION

State	: Lyophilized	
Specific activity	: more than 150 U/mg protein	
Contaminants	: (as Diaphorase activity = 100 %)	
	Adenylate kinase	< 0.01 %
	NADH oxidase	< 0.20 %

PROPERTIES

Molecular weight	: ca. 110,000	
Subunit molecular weight	: ca. 50,000	
Optimum pH	: 8.0	(Fig,1)
pH stability	: 6.0 – 9.0	(Fig.2)
Thermal stability	: No detectable decrease in	
	activity up to 70 °C.	(Fig. 3, 4)
Michaelis constants	: (50 mM HEPES buffer, pH 7.0, at 30) °C)
	3-(4,5-Dimethyl-2-thiazolyl)-2,5-diph	enyl-2H-tetrazolium
	bromide (MTT)	0.345 mM
	NADH	0.033 mM
		(Table 1)
Substrate specificity	: NADH	100 %
	NADPH	1 %
	MTT	100 %
	Lipoate	103 %
		(Table 1)

STORAGE

Store at -20°C

APPLICATION

The enzyme is useful for measurement of various dehydrogenase reactions in the visible spectral range.

Principle

The change in absorbance is measured at 565 nm according to the following reaction.

Di-22 NADH + MTT(ox.) + H⁺ → NAD⁺ + MTT(red.)

Unit Definition

One unit of activity is defined as the amount of Diaphorase that forms 1 μmol of NAD+ per minute at 30 $^\circ C$

Solutions

- I Buffer solution ; 100 mM HEPES, pH 7.0
- II 3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2*H*-tetrazolium bromide (MTT) solution ; 10 mM (20 mg MTT disodium salt·2H₂O/5 mL distilled water)
- III NADH solution ; 13.1 mM (0.100 g NADH disodium salt•3H₂O /10 mL distilled water)
- IV Triton solution; 10 % (1 mL TritonX-100 dilute with distilled water up to10 mL)

Preparation of Enzyme Solution

Dissolve the lyophilized enzyme with distilled water and dilute to 1 to 5 U/mL with 50 mM potassium phosphate buffer, pH 7.5, 1 mg/mL BSA.

Procedure

1. Prepare the following reaction mixture and pipette 3.00 mL of reaction mixture into a cuvette.

Solution I	15.00 mL	SolutionIV	1.50 mL
Solution II	1.50 mL	H ₂ O	10.80 mL
Solution 	1 20 ml		

2. Incubate at 30 °C for about 3 minutes.

3. Add 0.01 mL of enzyme solution into the cuvette and mix.

4. Read absorbance change at 565 nm per minute (ΔAbs_{565}) in the linear portion of curve.

Calculation

Volume activity (U/mL) = $\frac{(\Delta Abs_{565}) X (3.00 + 0.01)}{20.0 X 0.01}$ X d.f.

Volume activity (U/mL)

Specific activity (U/mg protein) = ______ Protein concentration (mg/mL)*

d.f. ; dilution factor

20.0 ; millimolar extinction coefficient of MTT (cm²/ μ mol)

*Protein concentration ; determined by Bradford's method

REFERENCE

1. Packman, L.C., and Perham. R.N.; FEBS Lett., 139, 155 (1982)

		1		1	
Acceptor		MTT		Lipoate	
Km ^{Acceptor} Km ^{NADH}	(mM) (mM)	0.345 0.033		2	2.0 .01
Relative Activi	ty	100		103	
Assay Mixture HEPESI (pH 7.0) 50 mM (p NADH 0.5 mM (r MTT 0.5 mM NA Triton X-100 0.5 % Lip ED		Potassium (pH 6.5) NADH NAD Lipoate EDTA BSA	Phosphate 70.5 mM 0.2 mM 0.3 mM 10.2 mM 0.81 mM 0.7 mg/mL		
Wavelength fo Measuremen	r (nm)	565		3	340
Extinction coefficient (cr	n²/µmol)) 20 6.22		5.22	

Table 1. SUBSTRATE SPECIFICITY OF DIAPHORASE 22

GALACTOSE DEHYDROGENASE (GalDH)

[EC 1. 1. 1. 48]

from recombinant E. coli

D-Galactose + NAD(P)⁺ \leftrightarrow D-Galactono- δ -lactone + NAD(P)H + H⁺

SPECIFICATION		
State Specific activity Contaminants	 Ammonium sulphate suspension more than 80 U/mg protein (as GalDH activity = 100 %) NADH oxidase LDH ADH 	< 0.10 % < 0.10 % < 0.01 %
PROPERTIES		
Subunit molecular weight	: ca. 33,800	
Optimum pH	: 10.5	(Fig. 1)
pH stability	: 5.0 - 10.0	(Fig. 2)
Thermal stability	: No significant decrease in activity sulphate and 40 °C without Ammo	up to 50 °C with Ammonium nium sulphate .(Fig. 3, 4)
Michaelis constants	: D-Galactose NAD⁺	0.25 mM 0.15 mM
Substrate specificity (100mM)	: D-Galactose	100 %
	D-Glucose	0.2 %
	D-Xvlose	87%
	D-Maltose	0.1 %
		0.1 %
	D-SUCIOSE	U.I %

STORAGE

Store at 2 to 10 °C (Do not freeze) Stable at 4 °C for at least one year

APPLICATION

This enzyme is useful for determination of galactose.

Principle

The change in absorbance is measured at 340 nm according to the following reaction.

D-Galactose + NAD⁺ \longrightarrow D-Galactono- δ -lactone + NADH + H⁺

Unit Definition

One unit of activity is defined as the amount of GalDH that forms 1 μmol of NADH per minute at 30 °C.

Solutions

- I Buffer solution ; 100 mM Tris-HCl, pH9.1 (at 30 °C)
- II NAD⁺ solution ; 100 mM
- III D-Galactose solution ; 1 M
- IV Enzyme diluent ; 20 mM potassium phosphate, 0.1 % bovine serum albumin, pH 7.5

Preparation of Enzyme Solution

Dilute the enzyme suspension to approx. 5 U/mL with the enzyme diluent.

Procedure

- 1. Prepare the following reaction mixture and pipette 3.00 mL of reaction mixture into a cuvette.
 - Solution I 27.60 mL
 - Solution II 0.90 mL
 - Solution III 1.50 mL
- 2. Incubate at 30 °C for about 3 minutes.

Specific activity (U/mg protein) =

- 3. Add 0.01 mL of enzyme solution into the cuvette and mix.
- 4. Read absorbance change at 340 nm per minute (ΔAbs_{340}) in the linear portion of curve.

Calculation

Volume activity (U/mL) =
$$\frac{(\Delta Abs_{340}) \times (3.00 + 0.01)}{6.22 \times 0.01} \times d.f.$$

Volume activity (U/mL)

Protein concentration (mg/mL)*

d.f. ; dilution factor

6.22 ; millimolar extinction coefficient of NADH (cm²/µmol) *Protein concentration ; determined by the Bradford's method

GLUCOKINASE 2 (GlcK2)

[EC 2. 7. 1. 2]

from Recombinant E.coli

ATP + D-Glucose ↔ ADP + D-Glucose-6-phosphate

SPECIFI	CATION		
	State	: Lyophilized	
	Specific activity	: more than 350 U/mg protein	
	Contaminants	: (as GlcK2 activity = 100 %)	
		Glucose-6-phosphate dehydrogenase	< 0.01 %
		Phosphoglucomutase	< 0.01 %
		6-Phosphogluconate dehydrogenase	< 0.01 %
		Hexose-6-phosphate isomerase	< 0.01 %
		Glutathione reductase	< 0.01 %
PROPER	RTIES		
	Subunit molecular weight	: ca. 32,000	
	Optimum pH	: 9.0	(Fig. 1)
	pH stability	: 7.0 - 10.0	(Fig. 2)
	Optimum temperature	: 70 °C	(Fig. 5)
	Thermal stability	: No detectable decrease in activity up to 60 °C.	(Fig. 3, 4)
	Michaelis constants	: (60 mM Tris-HCI buffer, pH 8.5, at 30 °C)	
		Glucose	0.1 mM
		ATP	0.05 mM
	Substrate specificity	: D-Glucose	100 %
		D-Mannose	20 %
		D-Fructose	0 %

STORAGE

Stable at -20 °C for at least one year

APPLICATION

The enzyme is useful for diagnostic reagent, for example, glucose determination or CK determination, and for the specific determination of glucose.

Principle

The change in absorbance is measured at 340 nm according to the following reactions.

ATP + Glucose _____ ADP + Glucose-6-phosphate

Glucose-6-phosphate + NADP⁺ Gluconolactone-6-phosphate + NADPH + H⁺

Unit Definition

One unit of activity is defined as the amount of GlcK2 that forms 1 µmol of glucose-6-phosphate per minute at 30 °C.

Solutions

- I Buffer solution ; 100 mM Tris-HCl, pH 9.0
- II ATP solution ; 100 mM (0.605 g ATP disodium salt·3H₂O/(8.2 mL distilled water + 1.8 mL 1 N-NaOH))
- III MgCl₂ solution ; 1 M (20.33 g MgCl₂·6H₂O/100 mL distilled water)
- IV NADP⁺ solution ; 22.5 mM [(0.172 g NADP+ monosodium salt or 0.177 g NADP+ disodium salt)/10 mL distilled water]
- V Glucose solution ; 40 mM (0.072 g glucose (anhyd.)/10 mL distilled water)
- VI Glucose-6-phosphate dehydrogenase (G6PDH); (from yeast. Roche Diagnostics K.K., No. 127 671) suspension in 3.2 M (NH₄)₂SO₄ solution (10 mg/2 mL) approx. 140 U/mg at 25 °C

Preparation of Enzyme Solution

Dissolve the lyophilized enzyme with distilled water and dilute to 5 to 10 U/mL with 50 mM Tris-HCI buffer, pH 8.5.

Procedure

1. Prepare the following reaction mixture and pipette 3.00 mL of reaction mixture into a cuvette.

Solution I	17.97mL	SolutionIV	1.20 mL
Solution II	1.20 mL	Solution V	9.00 mL
Solution Ⅲ	0.60 mL	Solution VI	0.03 mL

- 2. Incubate at 30 °C for about 3 minutes.
- 3. Add 0.01 mL of enzyme solution into the cuvette and mix.
- 4. Read absorbance change at 340 nm per minute (ΔAbs_{340}) in the linear portion of curve.

Calculation

Volume activity (U/mL) =
$$\frac{(\Delta Abs_{340}) \times (3.00 + 0.01)}{6.22 \times 0.01} \times d.f.$$

Specific activity (U/mg protein) = Volume activity (U/mL)

Protein concentration (mg/mL)*

d.f.; dilution factor

6.22 ; millimolar extinction coefficient of NADPH (cm²/µmol) *Protein concentration; determined by Bradford's method

REFERENCE

- 1. Hengartner, H., and Zuber, H.; FEBS Lett., 37, 212 (1973)
- 2. Kamei, S., Tomita, K., Nagata, K., Okuno, H., Shiraishi, T., Motoyama, A., Ohkubo, A., and Yamanaka, H.; *J. Clin. Biochem. Nutr.*, **3**,1 (1987)

3. Tomita, K., Kamei, S., Nagata, K., Okuno, H., Shiraishi, T., Motoyama, A., Ohkubo, A., and Yamanaka, M.; *ibid.*, **3**, 11 (1987)

GLUCOSE DEHYDROGENASE (GlcDH2)

[EC 1. 1. 1. 47]

from recombinant E. coli

D-Glucose + NAD(P)⁺ ↔ D-Glucono- δ -lactone + NAD(P)H + H⁺

SPECIFI	CATION		
	State	: Lyophilized	
	Specific activity	:more than 900 U/mg protein	
	Contaminants	: (as GlcDH2 activity = 100 %)	
		NADH oxidase	< 0.01 %
PROPER	RTIES		
	Molecular weight	: ca. 126,000	
	Subunit molecular weight	: ca. 31,500	
	Optimum pH	: 8.5	(Fig. 1)
	pH stability	: 5.0 - 10.0 (with 3M NaCl)	(Fig. 2)
	Thermal stability	: No significant decrease in activity up to 70 °C.	,
	·	(with 3M NaCl and 0.1% BSA)	(Fig. 3, 4)
	Michaelis constants	: D-Glucose	3.7 mM
		NAD ⁺	0.06 mM
		NADP ⁺	0.02 mM
	Substrate specificity (100mM)	: D-Glucose	100 %
		D-Maltose	1.1 %
		D-Galactose	0.1 %
		D-Xylose	3.0 %
		D-Fructose	0.3 %
		D-Mannose	4.8 %
		D-Arabinose	0 %
		Trehalose	0 %
		D-Lactose	1.3 %
		D-Sucrose	0 %
		2-Deoxy-D-Glucose	100 %
		D-Glucose-1-Phosphate	0 %
		D-Glucose-6-Phosphate	0 %
		D-Sorbitol	0 %

STORAGE

Stable at -20 °C for at least one year

APPLICATION

This enzyme is useful for determination of glucose.

Principle

The change in absorbance is measured at 340 nm according to the following reaction.

D-Glucose + NAD⁺ \longrightarrow D-Glucono- δ -lactone + NADH + H⁺

Unit Definition

One unit of activity is defined as the amount of GlcDH2 that forms 1 μmol of NADH per minute at 37 °C.

Solutions

- I Buffer solution ; 100 mM Tris-HCl, pH 8.5 (at 25 °C)
- I NAD⁺ solution ; 100 mM (0.663 g NAD⁺ free acid/10 mL distilled water)
- III D-Glucose solution ; 1 M (1.802 g glucose (anhyd.)/10 mL distilled water)

IV NaCl solution ; 5 M (2.92 g NaCl/10 mL distilled water)

Preparation of Enzyme Solution

Dissolve the lyophilized enzyme with distilled water and dilute to 5 to 15 U/mL with 20 mM potassium phosphate buffer containing 1 mg/mL BSA and 2 M NaCl, pH 6.5.

Procedure

1. Prepare the following reaction mixture and pipette 2.70 mL of reaction mixture into a cuvette.

Solution I	17.22 mL
Solution II	0.50 mL
Solution III	2.00 mL
SolutionIV	0.28 mL

2. Incubate at 37 °C for about 3 minutes.

Specific activity (U/mg protein) = -

- 3. Add 0.015 mL of enzyme solution into the cuvette and mix.
- 4. Read absorbance change at 340 nm per minute (ΔAbs_{340}) in the linear portion of curve.

Calculation

Volume activity (U/mL) = $\frac{(\Delta Abs_{340}) \times (2.70 + 0.015)}{6.22 \times 0.015} \times d.f.$

Volume activity (U/mL)

Protein concentration (mg/mL)*

d.f. ; dilution factor

6.22 ; millimolar extinction coefficient of NADH (cm²/µmol) *Protein concentration ; determined by the absorbance at 280nm (Abs280), where 1 Abs280 = 1 mg/mL

REFERENCE

1. Ramaley, R.F. and Vasantha, N.; *J. Biol. Chem.* **258**, 12558-12565 (1983)

GLYCEROKINASE (GlyK)

[EC 2.7.1.30]

from recombinant E. coli

Glycerol + ATP ↔ Glycerol-3-phosphate + ADP

SPECIFICATION

State	: Lyophilized
Specific activity	: more than 80 U/mg protein

PROPERTIES

: ca. 54,700	
: 9.8	(Fig. 1)
: 5.5 - 9.0	(Fig. 2)
: No detectable decrease in activity up to 40 °C.	(Fig. 3)
: above 50 °C	(Fig. 4)
: (186 mM Glycine-Hydrazine-KOH buffer pH 9.8	, at 30 °C)
Glycerol	0.026 mM
ATP	0.025 mM
	 : ca. 54,700 : 9.8 : 5.5 - 9.0 : No detectable decrease in activity up to 40 °C. : above 50 °C : (186 mM Glycine-Hydrazine-KOH buffer pH 9.8) Glycerol ATP

STORAGE

Stable at -20 °C for at least six months

APPLICATION

The enzyme is useful for enzymatic determination of glycerol and triglyceride when coupled with glycerol-3-phosphate dehydrogenase

Principle

The change in absorbance is measured at 340 nm according to the following reactions.

Glycerol + ATP Glycerol-3-phosphate + ADP

Glycerol-3-phosphate + NAD⁺ G3PDH Dihydroxyacetone phosphate + NADH + H⁺

Unit Definition

One unit of activity is defined as the amount of GlyK that forms 1 μmol of NADH per minute at 30 °C.

Solutions

- I Buffer solution ; 200 mM Glycine-Hydrazine-KOH, pH 9.8 (Dissolve 1.5 g glycine and 5 mL hydrazine hydrate in 80 mlmL distilled water. After adjusting pH to 9.8 with 1 M KOH, fill up to 100 mL with distilled water.)
- I MgCl₂ solution ; 100 mM (2.03 g MgCl₂·6H₂O/100 mL distilled water)
- III ATP solution ; 100 mM (0.605 g ATP disodium salt·3H₂O/(8.2 mL distilled water + 1.8 mL 1 M NaOH))
- IV NAD⁺ solution; 100 mM (0.663 g NAD⁺ free acid/10 mL distilled water)
- V Glycerol-3-phosphate dehydrogenase ; 1700 U/mL (from rabbit muscle, Roche Diagnostics)
- VI Glycerol solution ; 330 mM (3.04 g Glycerol/100 mL distilled water)

Preparation of Enzyme Solution

Dissolve the lyophilized enzyme with distilled water and dilute the enzyme solution to 0.1 to 1.0 U/mL with 50 mM Tris-HCl buffer pH 9.0 containing 0.1 % bovine serum albumin.

Procedure

1. Prepare the following reaction mixture and pipette 2.70 mL of reaction mixture into a cuvette.

Solution I	27.90 mL	SolutionIV	0.15 mL
Solution II	0.57 mL	Solution V	0.30 mL
Solution III	0.39 mL	Solution VI	0.30 mL
Distilled water	0.39 mL		

2. Incubate at 30 °C for about 3 minutes.

3. Add 0.015 mL of enzyme solution into the cuvette and mix.

4. Read absorbance change at 340 nm per minute (ΔAbs_{340}) in the linear portion of curve.

Calculation

Volume activity (U/mL) =
$$\frac{(\Delta Abs_{340}) \times (2.70 + 0.015)}{6.22 \times 0.015} \times d.f.$$

Specific activity (U/mg protein) = ----

Protein concentration (mg/mL)*

d.f.; dilution factor

6.22 ; millimolar extinction coefficient of NADH ($cm^2/\mu mol$) *Protein concentration ; determined by the absorbance at 280 nm (Abs280), where 1 Abs280 = 1 mg/mL

REFERENCE

1. Mike J. Comer, Chris J. Bruton, and Tony Atkinson ; J. App. Biochem. 1, 259-270 (1979)

GLYCEROL-3-PHOSPHATE DEHYDROGENASE (G3PDH)

[EC 1.1.1.8]

from recombinant E. coli

Glycerol-3-phosphate + NAD⁺ \leftrightarrow Dihydroxyacetone phosphate + NADH + H⁺

SPECIFICATION

State	: Lyophilized
Specific activity	:more than 7 U/mg protein

PROPERTIES

Subunit molecular weight	: ca. 36,800	
Optimum pH	: 9.0	(Fig. 1)
pH stability	: 6.5 - 10.0	(Fig. 2)
Thermal stability	: No detectable decrease in activity up to 80 °C.	(Fig. 3)
Optimum temperature	: above 60 °C	(Fig. 4)
Michaelis constants	:(90 mM Bicine buffer pH 9.0, at 37 °C)	
	Glycerol-3-phosphate	0.074 mM
	NAD ⁺	0.022 mM

STORAGE

Stable at -20 °C for at least one year

APPLICATION

The enzyme is useful for enzymatic determination of glycerol and triglyceride when coupled with glycerokinase

Principle

The change in absorbance is measured at 340 nm according to the following reactions.

Glycerol-3-phosphate + NAD⁺ G3PDH → Dihydroxyacetone phosphate + NADH + H⁺

Unit Definition

One unit of activity is defined as the amount of G3PDH that forms 1 μmol of NADH per minute at 37 °C.

Solutions

- I Buffer solution ; 100 mM Bicine-NaOH, pH 9.0
- II Glycerol-3-phosphate solution ; 50 mM (0.172 g Glycerol-3-phosphate bis(cyclohexylammonium) salt/20 mL distilled water)
- III NAD⁺ solution ; 100 mM (0.663 g NAD⁺ free acid/10 mL distilled water)

Preparation of Enzyme Solution

Dissolve the lyophilized enzyme with distilled water and dilute the enzyme solution to 0.3 to 1.2 U/mL with 50 mM BICINE-NaOH buffer pH 9.0 containing 0.1 % bovine serum albumin.

Procedure

1. Prepare the following reaction mixture and pipette 2.70 mL of reaction mixture into a cuvette.

Solution I	27.00 mL
Solution II	1.02 mL
Solution III	0.51 mL
Distilled water	1.47 mL
at 27 °C for abo	ut 2 minuto

2. Incubate at 37 °C for about 3 minutes.

Specific activity (U/mg protein) = -

- 3. Add 0.015 mL of enzyme solution into the cuvette and mix.
- 4. Read absorbance change at 340 nm per minute (ΔAbs_{340}) in the linear portion of curve.

Calculation

Volume activity (U/mL) = $\frac{(\Delta Abs_{340}) \times (2.70 + 0.015)}{6.22 \times 0.015} \times d.f.$

Volume activity (U/mL)

Protein concentration (mg/mL)*

d.f. ; dilution factor

6.22 ; millimolar extinction coefficient of NADH (cm²/ μ mol) *Protein concentration ; determined by the absorbance at 280 nm (Abs280), where 1 Abs280 = 1 mg/mL

D-LACTATE DEHYDROGENASE (D-LDH)

[EC 1. 1. 1. 28]

from Microorganism

D-Lactate + NAD⁺ \leftrightarrow Pyruvate + NADH + H⁺

FOR PYRUVATE \rightarrow LACTATE REACTION

SPECIFICATION		
State Specific activity Contaminants	: Lyophilized : more than 2,500 U/mg protein : (as D-LDH activity = 100 %)	
	NADH oxidase	< 0.01 %
	GOT	< 0.01 %
	GPT	< 0.01 %
PROPERTIES		
Molecular weight	: ca. 80,000	
Subunit molecular weight	: ca. 40,000	
Optimum pH	: 7.5	(Fig. 1)
pH stability	: 5.5 - 10.0	(Fig. 2)
Isoelectric point	: 4.1	
Thermal stability	: No detectable decrease in activity up to 40 °C.	(Fig. 3, 4)
Michaelis constants	: (94 mM Potassium phosphate buffer, pH 7.5, at	t 30 °C)
	Pyruvate	0.80 mM
	NADH	0.18 mM
Stabilizers	: (NH4)2 SO4, BSA	
Inhibitors	: Zn ₂ +, Cu ₂ +	

STORAGE

Stable at -20 °C at least one year

Principle

The change in absorbance is measured at 340 nm according to the following reaction.

Pyruvate + NADH + H⁺ _____ D-Lactate + NAD⁺

Unit Definition

One unit is defined as the amount of D-LDH that forms 1 µmol of NAD⁺ per minute at 30 °C.

Solutions

- I Buffer solution ; 100 mM Potassium phosphate buffer, pH 7.5
- I Sodium pyruvate solution ; 100 mM (100 mg sodium pyruvate/10 mL distilled water)
- III NADH solution ; 13.1 mM (0.100 g NADH disodium salt 3H₂O/10 mL distilled water)

Preparation of Enzyme Solution

Dissolve the lyophilized enzyme with distilled water and dilute to 3 to 5 U/mL with 50 mM potassium phosphate buffer containing 1 mg/mL BSA, pH 7.0.

Procedure

- 1. Prepare the following reaction mixture and pipette 3.00 mL of reaction mixture into a cuvette.
 - Solution I 28.00 mL
 - Solution II 1.20 mL
 - Solution III 0.80 mL
- 2. Incubate at 30 °C for about 3 minutes.
- 3. Add 0.01 mL of enzyme solution into the cuvette and mix.
- 4. Read absorbance change at 340 nm per minute (ΔAbs₃₄₀) in the linear portion of curve.

Calculation

Volume activity (U/mL) = $\frac{(\Delta Abs_{340}) \times (3.00 + 0.01)}{6.22 \times 0.01} \times d.f.$

Volume activity (U/mL)

Specific activity (U/mg protein) = Protein concentration (mg/mL)*

d.f.; dilution factor

6.22 ; millimolar extinction coefficient of NADH (cm²/µmol) *Protein concentration ; determined by Bradford's method

MALATE DEHYDROGENASE (MDH)

[EC 1. 1. 1. 37]

from Microorganism

L-Malate+ NAD⁺ ↔ Oxaloacetate + NADH + H⁺

FOR OXALATE \rightarrow MALATE REACTION

SPECIFI	CATION		
	State	: Lyophilized	
	Specific activity	:more than 1,200 U/mg protein	
	Contaminants	: (as MDH activity = 100 %)	
		GOT	< 0.01 %
		GPT	< 0.01 %
		NADHoxidase	< 0.01 %
		Glutamate dehydrogenase	< 0.01 %
		Fumarase	< 0.01 %
PROPER	RTIES		
	Molecular weight	: ca. 72,000	
	Subunit molecular weight	: ca. 36,000	
	Optimum pH	: 9.0	(Fig. 1)
	pH stability	: 5.5 - 11.0	(Fig. 2)
	Thermal stability	: No detectable decrease in activity up to 50 °C.	(Fig. 3, 4)
	Michaelis constants	:(90 mM Tris-HCl buffer, pH 9.0, at 30 °C)	
		Oxaloacetate	0.027 mM
		NADH	0.014 mM

STORAGE

Stable at -20 °C for at least six months

APPLICATION

This enzyme is useful for enzymatic determination of L- malate and of glutamate oxaloacetate transaminase in clinical analysis.

Principle

The change in absorbance is measured at 340 nm according to the following reaction.

Oxaloacetate + NADH + H⁺ MDH L-Malate + NAD⁺

Unit Definition

One unit of activity is defined as the amount of MDH that forms 1 µmol of NAD⁺ per minute at 30 °C.

Solutions

- I Buffer solution ; 200 mM Tris-HCl, pH 9.0
- I Oxaloacetate solution ; 15 mM (0.020 g oxaloacetate/10 mL distilled water)
- III NADH solution ; 13.1 mM (0.100 g NADH disodium salt·3H₂O/10 mL distilled water)

Preparation of Enzyme Solution

Dissolve the lyophilized enzyme with distilled water and dilute to 3 to 5 U/mL with 100 mM Tris-HCl buffer, pH 9.0.

Procedure

- 1. Prepare the following reaction mixture and pipette 3.00 mL of reaction mixture into a cuvette.
 - Solution I 13.50 mL Solution II 1.00 mL
 - Solution Ⅲ 0.57 mL H₂O 14.93 mL
- 2. Incubate at 30 °C for about 3 minutes.
- 3. Add 0.01 mL of enzyme solution into the cuvette and mix.
- 4. Read absorbance change at 340 nm per minute (ΔAbs_{340}) in the linear portion of curve.

Calculation

Volume activity (U/mL) =
$$\frac{(\Delta Abs_{340}) \times (3.00 + 0.01)}{6.22 \times 0.01} \times d.f.$$

Volume activity (U/mL)

Specific activity (U/mg protein) = -

Protein concentration (mg/mL)*

d.f. ; dilution factor

6.22 ; millimolar extinction coefficient of NADH (cm²/µmol) *Protein concentration ; determined by Bradford's method

MUTAROTASE (MRO)

[EC 5. 1. 3. 3]

from Microorganism

 $\alpha\text{-}D\text{-}Glucose \leftrightarrow \beta\text{-}D\text{-}Glucose$

SPECIFICATION

State	: Lyophilized	
Specific activity	: more than 120 U/mg protein	
Contaminants	: (as MRO activity = 100 %)	
	NADHoxidase	< 0.01 %

PROPERTIES

: ca. 39,500	
: 7.0 - 9.0	(Fig. 1)
: 3.5 - 10.0	(Fig. 2)
: No detectable decrease in activity up to 50 °C.	(Fig. 3, 4)
	: ca. 39,500 : 7.0 - 9.0 : 3.5 - 10.0 : No detectable decrease in activity up to 50 °C.

STORAGE

Stable at -20 °C for at least one year

APPLICATION

This enzyme is useful for enzymatic determination of glucose.

Principle

Acceleration of the glucose dehydrogenase reaction by Mutarotase is measured according to the following reactions.

Unit Definition

One unit of activity is defined as the amount of Mutarotase that forms 10 μ mol of NADH per minute at 25 °C.

Solutions

- I HEPES buffer ; 50 mM (1.19 g HEPES / 100 mL distilled water, adjust pH to 7.5 with NaOH)
- I Sucrose solution ; 16.7 mM (57 mg Sucrose / 10 mL distilled water)
- III NAD⁺ solution ; 100 mM (0.663 g NAD⁺ free acid / 10 mL distilled water)
- IV Glucose dehydrogenase solution ; 3 kU/mL (GlcDH2, Nipro Corp. / 20 mM potassium phosphate containing 2 M NaCl, pH6.5)
- V βFructosidase solution ; ≧30 kU/mL (100 mg Invertase from baker's yeast, Sigma-Aldrich 14504 / 1 mL distilled water)

Preparation of Enzyme Solution

Dissolve the lyophilized enzyme with distilled water and dilute to 0.7 to 1.4 U/mL with 20 mM potassium phosphate pH 7.3 containing 1 mg/mL BSA.

Procedure

1. Prepare the following reaction mixture and pipette 2.70 mL of reaction mixture into a cuvette.

Solution I	19.90 mL	SolutionIV	0.166 mL
Solution II	1.00 ml		

Solution II	1.00 IIIL
Solution Ⅲ	0.60 mL

- 2. Add 0.015 mL of the enzyme solution into the cuvette and mix.
- 3. Incubate at 25 °C for about 3 minutes.
- 4. Add 0.06 mL of the Solution V into the cuvette and mix.
- 5. Read absorbance change at 340 nm per minute (ΔAbs1) in the linear portion of curve.
- 6. Run the procedure 1 to 5 with the enzyme diluent instead of the enzyme solution ($\Delta Abs2$).

Calculation

Volume activity (U/mL) =
$$\frac{(\Delta Abs1 - \Delta Abs2) \times (2.70 + 0.015 + 0.060)}{6.22 \times 0.015 \times 10} \times d.f.$$

Specific activity (U/mg protein) = Volume activity (U/mL)

Protein concentration (mg/mL)*

- d.f. ; dilution factor
- 6.22; millimolar extinction coefficient of NADH (cm²/µmol)

10 ; conversion factor

*Protein concentration ; determined by the absorbance at 280 nm (Abs280), where 1 Abs280 = 1 mg/mL

PHENYLALANINE DEHYDROGENASE (PheDH)

[EC 1.4.1.20]

from Thermoactinomyces intermedius

L-Phenylalanine + NAD⁺ + H₂O \leftrightarrow Phenylpyruvate + NH₄⁺ + NADH

SPECIFI	CATION		
	State Specific activity Contaminants	 Ammonium sulphate suspension more than 30 U/mg protein (as PheDH activity = 100 %) NADH oxidase Lactate dehydrogenase 	< 0.01 % < 0.01 %
PROPER	TIES		
	Molecular weight	: ca. 380,000	
	Subunit molecular weight	: ca. 40,000	
	Optimum pH	: 11.5	(Fig. 1)
	pH stability	: 5.0 - 10.0	(Fig. 2)
	Thermal stability	: No detectable decrease in activity up to 50 °C.	(Fig. 3, 4)
	Michaelis constants	: (200 mM Gly-KCI-KOH buffer, pH 11.0, at 30 °C)	
		L-Phenylalanine	0.66 mM
		NAD ⁺	0.05 mM
	Substrate specificity	: L-Phenylalanine	100 %
		L-Tyrosine	7.6 %
		L-Methionine	1.5 %

STORAGE

Stable at 4 °C for at least six months (Do not freeze)

Principle

The change in absorbance is measured at 340 nm according to the following reaction.

L-Phenylalanine + NAD⁺ + H₂O $\xrightarrow{}$ PheDH \rightarrow Phenylpyruvate + NH₄⁺ + NADH

Unit Definition

One unit of activity is defined as the amount of PheDH that forms 1 μ mol of NADH per minute at 30 °C.

Solutions

- I Buffer solution ; 400 mM Gly-KCI-KOH, pH 11.0
- I L-Phenylalanine solution ; 100 mM (0.165 g L-phenylalanine/10 mL distilled water)
- III NAD⁺ solution ; 100 mM (0.663 g NAD⁺ free acid/10 mL distilled water)

Preparation of Enzyme Solution

Dilute the ammonium sulphate suspension of enzyme to 2 to 6 U/mL with 10 mM Tris-HCl buffer, pH 8.0, containing 50 mM NaCl.

Procedure

1. Prepare the following reaction mixture and pipette 3.00 mL of reaction mixture into a cuvette.

Solution I	15.00 mL
Solution II	3.00 mL
Solution III	0.15 mL

- H₂O 11.85 mL
- 2. Incubate at 30 °C for about 3 minutes.
- 3. Add 0.01 mL of enzyme solution into the cuvette and mix.
- 4. Read absorbance change at 340nm per minute (ΔAbs_{340}) in the linear portion of curve.

Calculation

Volume activity (U/mL) = $\frac{(\Delta Abs_{340}) \times (3.00 + 0.01)}{6.22 \times 0.01} \times d.f.$

Specific activity (U/mg protein) = Volume activity (U/mL)

Protein concentration (mg/mL)*

d.f. ; dilution factor

6.22 ; millimolar extinction coefficient of NADH (cm²/µmol) *Protein concentration ; determined by Bradford's method

REFERENCE

1. Ohshima, T., Takada, H., Yoshimura, T., Esaki, N., and Soda, K.; J. Bacteriol., 173, 3943 (1991)

PHOSPHOTRANSACETYLASE (PTA2)

[EC 2. 3. 1. 8]

from recombinant E. coli

Acetyl-CoA + Pi ↔ Acetylphosphate + CoA

SPECIFICATION		
State	: Lyophilized	
Specific activity	: more than 5,000 U/mg protein	
Contaminants	: (as PTA2 activity = 100 %)	
-	Acetate kinase	< 0.01 %
	Adenvlate kinase	< 0.01 %
	Lactate dehydrogenase	< 0.01 %
PROPERTIES		
Molecular weight	: ca. 69,700	
Subunit molecular weight	: ca. 33,500	
Optimum pH	: 7.4	(Fig. 1)
pH stability	: 4.0 - 11.0	(Fig. 2)
Thermal stability	: No detectable decrease in activity up to 60 °C.	(Fig. 3, 4)
Michaelis constants	: (87mM Tris-HCl buffer, pH 7.5, at 30 °C)	
	Coenzyme A	0.1 mM
	Acetyl Phosphate	0.5 mM

STORAGE

Stable at -20 °C for at least one year

Principle

The change in absorbance is measured at 233 nm according to the following reaction.

Acetylphosphate + CoA PTA2 Acetyl-CoA + Pi

Unit Definition

One unit of activity is defined as the amount of PTA that forms 1 μmol of acetyl-CoA per minute at 30 $^\circ C.$

Solutions

- I Buffer solution ; 100 mM Tris-HCl, pH 7.5
- I CoA solution ; 6.4 mM (50 mg CoA trilithium salt/10 mL distilled water)
- III Acetylphosphate solution ; 217 mM (0.400 g acetylphosphate potassium lithium salt/10 mL distilled water)
- IV Ammonium sulfate (AmS) solution ; 1 M (13.2 g AmS/100 mL distilled water)

Preparation of Enzyme Solution

Dissolve the lyophilized enzyme with distilled water and dilute to 5 to 20 U/mL with 50 mM Tris-HCI buffer, pH 8.0.

1.0 mL

Procedure

- 1. Prepare the following reaction mixture and pipette 3.00 mL of reaction mixture into a cuvette.
 - Solution I 26.0 mL Solution II
 - Solution II 2.0 mL Solution IV 1.0 mL
- 2. Incubate at 30 °C for about 3 minutes.
- 3. Add 0.01 mL of enzyme solution into the cuvette and mix.
- 4. Read absorbance change at 233 nm per minute (ΔAbs_{233}) in the linear portion of curve.

Calculation

Volume activity (U/mL) =
$$\frac{(\Delta Abs_{233}) X (3.00 + 0.01)}{4.44 X 0.01} X d.f.$$

Specific activity (U/mg protein) = Volume activity (U/mL)

Protein concentration (mg/mL)*

d.f. ; dilution factor

4.44 ; differential millimolar extinction coefficient between acety-CoA and CoA (cm²/µmol) *Protein concentration ; determined by Bradford's method

POLYNUCLEOTIDE PHOSPHORYLASE (PNPase3)

[EC 2. 7. 7. 8]

from recombinant E. coli

 $RNA_{n+1} + Pi \leftrightarrow RNA_n + Nucleoside diphosphate$

FOR DEPOLYMERIZATION REACTION

SPECIFICATION

State	: Liquid
Specific activity	: more than 2,000 U/mg protein

PROPERTIES

Subunit molecular weight Optimum pH pH stability Thermal stability Effectors : ca. 79,000 : 9.0 - 9.5 (Fig. 1) : 8.0 - 11.0 (Fig. 2) : No detectable decrease in activity up to 55 °C. (Fig. 3, 4) : cations and anions (Fig. 5, 6)

STORAGE

at -20 °C

APPLICATION

The enzyme is useful for the preparation of polyribonucleotide.

Principle

The change in absorbance is measured at 340 nm according to the following reactions.

Poly $A_n + Pi$ <u>PNPase3</u> Poly $A_{n-1} + ADP$ (I) ADP + PEP <u>PK</u> ATP + PyruvatePyruvate + NADH + H⁺ <u>LDH</u> Lactate + NAD⁺ (II)

Unit Definition

One unit of activity is defined as the amount of PNPase that forms 1 μ mol of ADP per hour at 60 °C by depolymerizing of Poly A.

Solutions

(Reaction I)

- I Buffer solution ; 100 mM Tris-HCl, pH 9.5 ((1.212 g Tris + 0.074 g EDTA + 0.014 mL 2mercaptoethanol + 0.610 g MgCl₂·6H₂O + 0.746 g KCl)/80 mL distilled water, adjusted to pH 9.5 with 1 N-HCl and filled up to 100 mL with distilled water)
- II KH₂PO₄ solution ; 65 mM (0.088 g KH₂PO₄/10 mL distilled water)
- Ⅲ polyadenylate (Poly A) solution ; (25 mg Poly A potassium salt/1 mL distilled water; ca. 35 mM based on AMP concentration)

(Reaction II)

- IV Buffer solution ; 100 mM Triethanolamine buffer, pH 7.6 ((9.300 g triethanolamine-HCI + 0.407 g MgCl₂·6H₂O + 0.373 g KCI)/400 mL distilled water, adjusted to pH 7.6 with 1 N-NaOH and filled up to 500 mL with distilled water)
- V NADH solution ; 13.1 mM (0.100 g NADH disodium salt·3H₂O/10 mL distilled water)
- VI Phosphoenolpyruvate (PEP) solution ; 56 mM (0.150 g PEP MCA salt/10 mL distilled water)
- Ⅶ Pyruvate kinase (PK); (from rabbit muscle, Roche Diagnostics K.K., No. 128 155) crystalline suspension in 3.2 M (NH₄)₂SO₄ solution (10 mg/mL) approx. 200 U/mg at 25 °C
- Ⅷ Lactate dehydrogenase (LDH); (from pig heart, Oriental Yeast Co. Ltd., Product Code: LDH-02) ammonium sulfate suspension, approx. 5,000 U/mL at 25 °C

Preparation of Enzyme Solution

Dissolve the lyophilized enzyme with distilled water and dilute to 2 to 150 U/mL with 50 mM Tris-HCl buffer, pH 8.5.

Procedure

(Reaction I)

1. Prepare the following reaction mixture and pipette 0.55 mL of reaction mixture into a test tube.

Solution I	2.50 mL	Solution Ⅲ	1.00 mL
Solution II	1.00 mL	H ₂ O	1.00 mL

- 2. Add 0.10 mL of enzyme solution and mix.
- 3. Incubate at 60 °C for exactly 10 minutes.
- 4. After incubation, add 0.01 mL conc. HCl and mix.
- Centrifuge at 10,000 rpm for 30 seconds. At the same time, repeat the Procedure 1 to 5 using distilled water in place of enzyme solution in Procedure 2 (as blank).

(Reaction II)

6. Prepare the following reaction mixture and pipette 2.50 mL of the reaction mixture into a cuvette. SolutionIV 24.18 mL SolutionVII 0.12 mL

Solution V	0.40 mL	Solution	0.05 mL
Solution VI	0.25 mL		

- 7. Incubate at 30 °C for about 3 minutes.
- 8. Add 0.10 mL of supernatant of Procedure 5 and mix.
- 9. Read absorbance at 340 nm (Abs•test). Repeat the Procedure using blank (Abs•blank).

Calculation

Volume activity (U/mL) = ((Abs•blank) - (Abs•test)) X $\frac{2.60 \times 0.65}{6.22 \times 0.10 \times 0.10} X \frac{60}{10} X d.f.$

Volume activity (U/mL)

Specific activity (U/mg protein) =

Protein concentration (mg/mL)*

d.f. ; dilution factor

6.22; millimolar extinction coefficient of NADH (cm²/µmol) *Protein concentration ; determined by the absorbance at 280 nm (Abs280), where 1 Abs280 = 1 mg/mL

REFERENCES

- 1. Smith, J.C., and Eaton, M.A.W.; Nucleic Acids Research, 1, 1763 (1974)
- 2. Wood, J.N., and Hutchinson, D.W.; ibid., 3, 219 (1976)

Measurement: 0.015 mL of each cation solution, 0.010 mL of enzyme solution and 0.055 mL of reaction mixture were mixed, and reacted at 60 °C. After 10 minutes, the quantity of ADP was determined. O NaCl, Δ KCl, \Box MgCl₂

Fig. 6 Effect of various anions on the activity of PNPase3 in the following Assay

Measurement: 0.015 mL of each anion solution, 0.010 mL of enzyme solution and 0.055 mL of reaction mixture were mixed, and reacted at 60 °C. After 10 minutes, the quantity of ADP was determined. \bigcirc NaCl, \triangle CH₃COONa, \square Na₂SO₄, \blacksquare NaH₂PO₄

PYRUVATE KINASE (PK2)

[EC 2.7.1.40]

from Recombinant E. coli

ATP + Pyruvate ↔ ADP + Phosphoenolpyruvate

SPECIFICATION : Lyophilized State Specific activity : more than 230 U/mg protein : (as PK activity = 100° %) Contaminants Adenylate kinase < 0.01 % Lactate dehydrogenase < 0.01 % PROPERTIES Subunit molecular weight : ca. 60,000 Optimum pH : 6.0 - 6.5 (Fig. 1) pH stability : 6.0 - 11.0 (Fig. 2) Thermal stability : No detectable decrease in activity up to 60 °C. (Fig. 3, 4) Michaelis constants : (76 mM Imidazole-HCl buffer, pH 7.2, at 30 °C) Phosphoenolpyruvate 1.0 mM ADP 1.5 mM

STORAGE

Stable at -20 °C for at least one year

APPLICATION

The enzyme is useful for diagnostic reagent, for example, ADP determination.

Principle

The change in absorbance is measured at 340 nm according to the following reaction.

ADP + PEP _____ ATP + Pyruvate

Pyruvate + NADH + H⁺ _____ Lactate + NAD⁺

Unit Definition

One unit of activity is defined as the amount of PK2 that forms 1 μmol of pyruvate per minute at 30 °C.

Solutions

- I Buffer solution ; 100 mM Imidazole-HCl, pH 7.2
- II ADP solution ; 100 mM (0.45 g ADP sodium salt, Sigma-Aldrich A2754/(9.0 mL distilled water + 1.0 mL 1 N NaOH))
- III NADH solution ; 13.1 mM (0.100 g NADH disodium salt·3H₂O/10 mL distilled water)
- IV Phosphoenolpyruvate (PEP) solution ; 56 mM (0.150 g PEP MCA salt/10 mL distilled water)
- V MgCl₂ solution ; 1 M (20.33 g MgCl₂·6H₂O/100 mL distilled water)
- VI KCI solution ; 2.5 M (18.64 g KCI/100 mL distilled water)
- Ⅶ Lactate dehydrogenase (LDH); (from pig heart, Oriental Yeast Co. Ltd., LDH (P.H.)) ammonium sulfate suspension, approx. 5,000 U/mL at 25 °C

Preparation of Enzyme Solution

Dissolve the lyophilized enzyme with distilled water and dilute to 5 to 10 U/mL with 50 mM Tris-HCl buffer, pH 8.5.

Procedure

1. Prepare the following reaction mixture and pipette 3.00 mL of reaction mixture into a cuvette.

22.71 mL	Solution V	0.48 mL
2.40 mL	SolutionVI	0.90 mL
0.45 mL	Solution VII	0.06 mL
3.00 mL		
	22.71 mL 2.40 mL 0.45 mL 3.00 mL	22.71 mL Solution V 2.40 mL Solution VI 0.45 mL Solution VII 3.00 mL Solution VII

- 2. Incubate at 30 °C for about 3 minutes.
- 3. Add 0.01 mL of enzyme solution into the cuvette and mix.
- 4. Read absorbance change at 340 nm per minute (ΔAbs_{340}) in the linear portion of curve.

Calculation

Volume activity (U/mL) =
$$\frac{(\Delta Abs_{340}) \times (3.00 + 0.01)}{6.22 \times 0.01} \times d.f.$$

Volume activity (U/mL)

Specific activity (U/mg protein) = Protein concentration (mg/mL)*

d.f. ; dilution factor

6.22 ; millimolar extinction coefficient of NADH (cm²/µmol) *Protein concentration ; determined by Bradford's method

REFERENCE

1. Sakai, H., Suzuki, K., and Imahori, K.; J. Biochem., 99, 1157 (1986)

