

MALATE DEHYDROGENASE (MDH)

[EC 1. 1. 1. 37]

from Microorganism

L-Malate+ NAD⁺ ↔ Oxaloacetate + NADH + H⁺

FOR OXALATE \rightarrow MALATE REACTION

SPECIF	ICATION State Specific activity Contaminants	 Lyophilized more than 1,200 U/mg protein (as MDH activity = 100 %) GOT GPT NADHoxidase Glutamate dehydrogenase 	< 0.01 % < 0.01 % < 0.01 % < 0.01 %
		Fumarase	< 0.01 %
PROPERTIES Molecular weight : ca. 72,000			
	Subunit molecular weight Optimum pH pH stability Thermal stability Michaelis constants	 ca. 36,000 9.0 5.5 - 11.0 No detectable decrease in activity up to 50 °C. (90 mM Tris-HCI buffer, pH 9.0, at 30 °C) Oxaloacetate 	(Fig. 1) (Fig. 2) (Fig. 3, 4) 0.027 mM
		NADH	0.014 mM

STORAGE

Stable at -20 °C for at least six months

APPLICATION

This enzyme is useful for enzymatic determination of L- malate and of glutamate oxaloacetate transaminase in clinical analysis.

ASSAY

Principle

The change in absorbance is measured at 340 nm according to the following reaction.

Oxaloacetate + NADH + H⁺ MDH L-Malate + NAD⁺

Unit Definition

One unit of activity is defined as the amount of MDH that forms 1 µmol of NAD⁺ per minute at 30 °C.

Solutions

- I Buffer solution ; 200 mM Tris-HCl, pH 9.0
- I Oxaloacetate solution ; 15 mM (0.020 g oxaloacetate/10 mL distilled water)
- III NADH solution ; 13.1 mM (0.100 g NADH disodium salt·3H₂O/10 mL distilled water)

Preparation of Enzyme Solution

Dissolve the lyophilized enzyme with distilled water and dilute to 3 to 5 U/mL with 100 mM Tris-HCl buffer, pH 9.0.

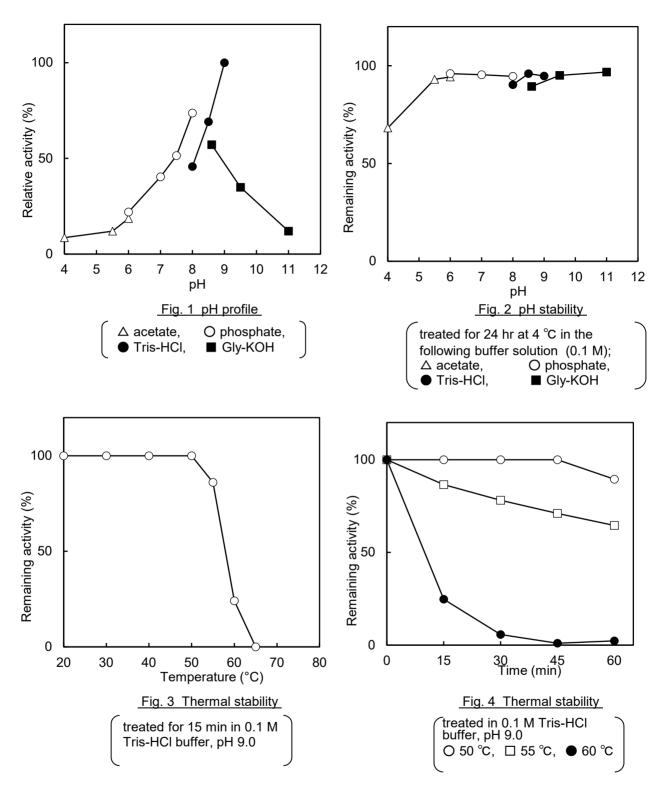
Procedure

- 1. Prepare the following reaction mixture and pipette 3.00 mL of reaction mixture into a cuvette.
 - Solution I 13.50 mL Solution II 1.00 mL
 - Solution Ⅲ 0.57 mL H₂O 14.93 mL
- 2. Incubate at 30 °C for about 3 minutes.
- 3. Add 0.01 mL of enzyme solution into the cuvette and mix.
- 4. Read absorbance change at 340 nm per minute (ΔAbs_{340}) in the linear portion of curve.

Calculation

Volume activity (U/mL) =
$$\frac{(\Delta Abs_{340}) \times (3.00 + 0.01)}{6.22 \times 0.01} \times d.f.$$

Volume activity (U/mL)


Specific activity (U/mg protein) = -

Protein concentration (mg/mL)*

d.f. ; dilution factor

6.22 ; millimolar extinction coefficient of NADH (cm²/µmol) *Protein concentration ; determined by Bradford's method

