

# GLYCEROKINASE (GlyK)

# [EC 2.7.1.30]

from recombinant E. coli

Glycerol + ATP ↔ Glycerol-3-phosphate + ADP

# SPECIFICATION

| State             | : Lyophilized               |
|-------------------|-----------------------------|
| Specific activity | : more than 80 U/mg protein |

#### PROPERTIES

| Subunit molecular weight | : ca. 54,700                                             |          |
|--------------------------|----------------------------------------------------------|----------|
| Optimum pH               | : 9.8                                                    | (Fig. 1) |
| pH stability             | : 5.5 - 9.0                                              | (Fig. 2) |
| Thermal stability        | : No detectable decrease in activity up to 40 °C.        | (Fig. 3) |
| Optimum temperature      | : above 50 °C                                            | (Fig. 4) |
| Michaelis constants      | : (186 mM Glycine-Hydrazine-KOH buffer pH 9.8, at 30 °C) |          |
|                          | Glycerol                                                 | 0.026 mM |
|                          | ATP                                                      | 0.025 mM |

# STORAGE

Stable at -20 °C for at least six months

# APPLICATION

The enzyme is useful for enzymatic determination of glycerol and triglyceride when coupled with glycerol-3-phosphate dehydrogenase



## ASSAY

#### Principle

The change in absorbance is measured at 340 nm according to the following reactions.

Glycerol + ATP Glycerol-3-phosphate + ADP

Glycerol-3-phosphate + NAD<sup>+</sup> G3PDH → Dihydroxyacetone phosphate + NADH + H<sup>+</sup>

# **Unit Definition**

One unit of activity is defined as the amount of GlyK that forms 1  $\mu mol$  of NADH per minute at 30 °C.

# Solutions

- I Buffer solution ; 200 mM Glycine-Hydrazine-KOH, pH 9.8 (Dissolve 1.5 g glycine and 5 mL hydrazine hydrate in 80 mlmL distilled water. After adjusting pH to 9.8 with 1 M KOH, fill up to 100 mL with distilled water.)
- I MgCl<sub>2</sub> solution ; 100 mM (2.03 g MgCl<sub>2</sub>·6H<sub>2</sub>O/100 mL distilled water)
- III ATP solution ; 100 mM (0.605 g ATP disodium salt·3H<sub>2</sub>O/(8.2 mL distilled water + 1.8 mL 1 M NaOH))
- IV NAD<sup>+</sup> solution; 100 mM (0.663 g NAD<sup>+</sup> free acid/10 mL distilled water)
- V Glycerol-3-phosphate dehydrogenase ; 1700 U/mL (from rabbit muscle, Roche Diagnostics)
- VI Glycerol solution ; 330 mM (3.04 g Glycerol/100 mL distilled water)

# **Preparation of Enzyme Solution**

Dissolve the lyophilized enzyme with distilled water and dilute the enzyme solution to 0.1 to 1.0 U/mL with 50 mM Tris-HCl buffer pH 9.0 containing 0.1 % bovine serum albumin.

#### Procedure

1. Prepare the following reaction mixture and pipette 2.70 mL of reaction mixture into a cuvette.

| Solution I      | 27.90 mL | SolutionIV  | 0.15 mL |
|-----------------|----------|-------------|---------|
| Solution II     | 0.57 mL  | Solution V  | 0.30 mL |
| Solution III    | 0.39 mL  | Solution VI | 0.30 mL |
| Distilled water | 0.39 mL  |             |         |
|                 |          |             |         |

2. Incubate at 30 °C for about 3 minutes.

3. Add 0.015 mL of enzyme solution into the cuvette and mix.

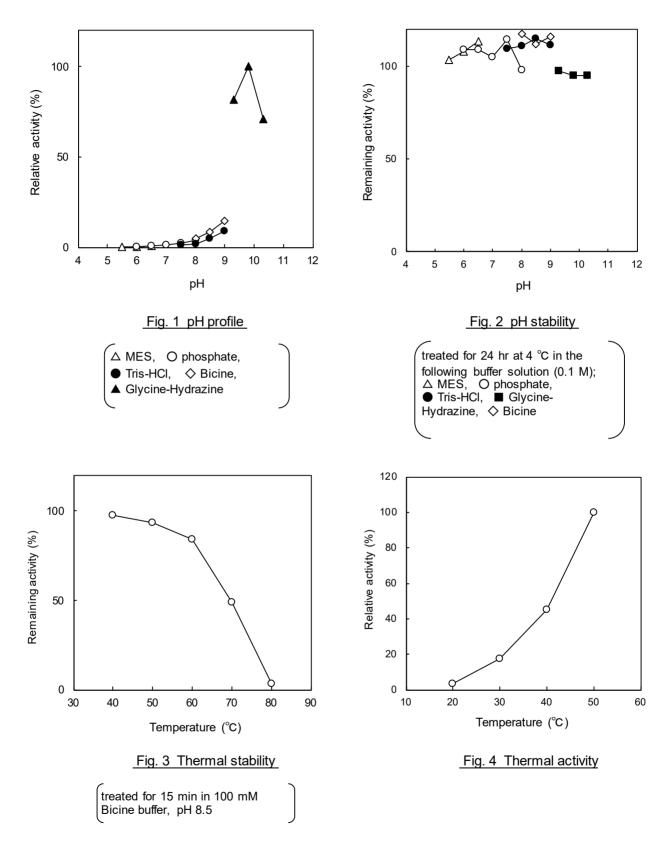
4. Read absorbance change at 340 nm per minute ( $\Delta Abs_{340}$ ) in the linear portion of curve.

#### Calculation

Volume activity (U/mL) = 
$$\frac{(\Delta Abs_{340}) \times (2.70 + 0.015)}{6.22 \times 0.015} \times d.f.$$

Specific activity (U/mg protein) = ----

Protein concentration (mg/mL)\*


d.f. ; dilution factor

6.22 ; millimolar extinction coefficient of NADH ( $cm^2/\mu mol$ ) \*Protein concentration ; determined by the absorbance at 280 nm (Abs280), where 1 Abs280 = 1 mg/mL

#### REFERENCE

1. Mike J. Comer, Chris J. Bruton, and Tony Atkinson ; J. App. Biochem. 1, 259-270 (1979)



