

GLUCOKINASE (GlcK)

[EC 2. 7. 1. 2]

from Bacillus stearothermophilus

ATP + D-Glucose ↔ ADP + D-Glucose 6-phosphate

SPECIFICATION

State : Lyophilized

Specific activity : more than 350 U/mg protein Contaminants : (as GlcK activity = 100 %)

Glucose-6-phosphate dehydrogenase < 0.01 %
Phosphoglucomutase < 0.01 %
6-Phosphogluconate dehydrogenase < 0.01 %
Hexose-6-phosphate isomerase < 0.01 %
Glutathione reductase < 0.01 %

PROPERTIES

Molecular weight : ca. 68,000 Subunit molecular weight : ca. 32,000

Optimum pH : 8.5 (Fig. 1) pH stability : 8.0 - 11.0 (Fig. 2)

Isoelectric point : 5
Optimum temperature : 65

Thermal stability : No detectable decrease in activity up to 60 °C. (Fig. 3, 4)

Michaelis constants : (60mM Tris-HCl buffer, pH 8.5, at 30 °C)

Glucose 0.1 mM

ATP 0.05 mM

Substrate specificity : D-Glucose 100 %
D-Mannose 25 %

D-Fructose 25 %

STORAGE

Stable at -20 to 5 °C for at least one year

APPLICATION

The enzyme is useful for diagnostic reagent, for example, glucose determination or CK determination, and for the specific determination of glucose.

ASSAY

Principle

The change in absorbance is measured at 340 nm according to the following reactions.

Glucose 6-phosphate + NADP⁺ Gluconolactone 6-phosphate + NADPH + H⁺

Unit Definition

One unit of activity is defined as the amount of GlcK that forms 1 μ mol of glucose 6-phosphate per minute at 30 °C.

Solutions

- I Buffer solution; 100 mM Tris-HCl, pH 9.0
- II ATP solution; 100 mM (0.605 g ATP disodium salt· $3H_2O/(8.2 \text{ mL} \text{ distilled water} + 1.8 \text{ mL} 1 \text{ N-NaOH}))$
- IV NADP⁺ solution; 22.5 mM mM [(0.172 g NADP⁺ monosodium salt or 0.177 g NADP⁺ disodium salt)/10 mL distilled water]
- V Glucose solution; 40 mM (0.072 g glucose (anhyd.)/10 mL distilled water)
- VI Glucose-6-phosphate dehydrogenase (G6PDH) ; (from yeast. Roche Diagnostics K.K., No. 127 671) suspension in 3.2 M (NH₄) $_2$ SO₄ solution (10 mg/2 mL) approx. 140 U/mg at 25 °C

Preparation of Enzyme Solution

Dissolve the lyophilized enzyme with distilled water and dilute to 5 to 10 U/mL with 50 mM Tris-HCI buffer, pH 8.5.

Procedure

1. Prepare the following reaction mixture and pipette 3.00 mL of reaction mixture into a cuvette.

 Solution I
 17.97mL
 SolutionIV
 1.20mL

 Solution II
 1.20 mL
 Solution V
 9.00mL

 Solution III
 0.60 mL
 Solution VI
 0.03mL

- 2. Incubate at 30 °C for about 3 minutes.
- 3. Add 0.01 mL of enzyme solution into the cuvette and mix.
- 4. Read absorbance change at 340 nm per minute (ΔAbs₃₄₀) in the linear portion of curve.

Calculation

Volume activity (U/mL) =
$$\frac{(\Delta Abs_{340}) \times (3.00 + 0.01)}{6.22 \times 0.01} \times d.f.$$

d.f.; dilution factor

6.22; millimolar extinction coefficient of NADPH (cm²/µmol) *Protein concentration; determined by Bradford's method

REFERENCE

- 1. Hengartner, H., and Zuber, H.; FEBS Lett., 37, 212 (1973)
- 2. Kamei, S., Tomita, K., Nagata, K., Okuno, H., Shiraishi, T., Motoyama, A., Ohkubo, A., and Yamanaka, H.; *J. Clin. Biochem. Nutr.*, **3**,1 (1987)
- 3. Tomita, K., Kamei, S., Nagata, K., Okuno, H., Shiraishi, T., Motoyama, A., Ohkubo, A., and

Yamanaka, M.; ibid., 3, 11 (1987)

O phosphate, ● Tris-HCl, ▲ carbonate

Fig. 3 Thermal stability

treated for 15 min in 0.1 M Tris-HCl buffer, pH 8.9

Fig. 2 pH stability

treated for 24 hr at 4 °C in the following buffer solution (0.1 M);

△ acetate, O phosphate,

■ Tris-HCl, ▲ carbonate

Fig. 4 Thermal stability

treated in 0.1 M Tris-HCl buffer, pH 8.9 O 60 °C, □ 70 °C, ● 80 °C