

GLUCOSE DEHYDROGENASE (GlcDH2)

[EC 1. 1. 1. 47]

from recombinant E. coli

D-Glucose + NAD(P)⁺ ↔ D-Glucono- δ -lactone + NAD(P)H + H⁺

SPECIFICATION State Specific activity Contaminants	: Lyophilized : more than 900 U/mg protein : (as GlcDH2 activity = 100 %) NADH oxidase	< 0.01 %
PROPERTIES		
Molecular weight Subunit molecular weight Optimum pH pH stability Thermal stability Michaelis constants Substrate specificity (100mM)	 ca. 126,000 ca. 31,500 8.5 5.0 - 10.0 (with 3M NaCl) No significant decrease in activity up to 70 °C (with 3M NaCl and 0.1% BSA) D-Glucose NAD⁺ NADP⁺ D-Glucose D-Maltose 	(Fig. 1) (Fig. 2) (Fig. 3, 4) 3.7 mM 0.06 mM 0.02 mM 100 % 1.1 %
	D-Galactose D-Xylose D-Fructose D-Mannose D-Arabinose Trehalose D-Lactose D-Sucrose 2-Deoxy-D-Glucose D-Glucose-1-Phosphate D-Glucose-6-Phosphate D-Sorbitol	$\begin{array}{c} 0.1 \ \% \\ 3.0 \ \% \\ 0.3 \ \% \\ 4.8 \ \% \\ 0 \ \% \\ 0 \ \% \\ 1.3 \ \% \\ 0 \ \% \\ 100 \ \% \\ 0 \ \% \\ 0 \ \% \\ 0 \ \% \\ 0 \ \% \\ 0 \ \% \end{array}$

STORAGE

Stable at -20 °C for at least one year

APPLICATION

This enzyme is useful for determination of glucose.

ASSAY

Principle

The change in absorbance is measured at 340 nm according to the following reaction.

D-Glucose + NAD⁺ $\xrightarrow{\text{GlcDH2}}$ D-Glucono- δ -lactone + NADH + H⁺

Unit Definition

One unit of activity is defined as the amount of GlcDH2 that forms 1 μmol of NADH per minute at 37 °C.

Solutions

- I Buffer solution ; 100 mM Tris-HCl, pH 8.5 (at 25 °C)
- I NAD⁺ solution ; 100 mM (0.663 g NAD⁺ free acid/10 mL distilled water)
- III D-Glucose solution ; 1 M (1.802 g glucose (anhyd.)/10 mL distilled water)

IV NaCl solution ; 5 M (2.92 g NaCl/10 mL distilled water)

Preparation of Enzyme Solution

Dissolve the lyophilized enzyme with distilled water and dilute to 5 to 15 U/mL with 20 mM potassium phosphate buffer containing 1 mg/mL BSA and 2 M NaCl, pH 6.5.

Procedure

1. Prepare the following reaction mixture and pipette 2.70 mL of reaction mixture into a cuvette.

Solution I	17.22 mL
Solution II	0.50 mL
Solution III	2.00 mL
SolutionIV	0.28 mL

2. Incubate at 37 °C for about 3 minutes.

Specific activity (U/mg protein) = -

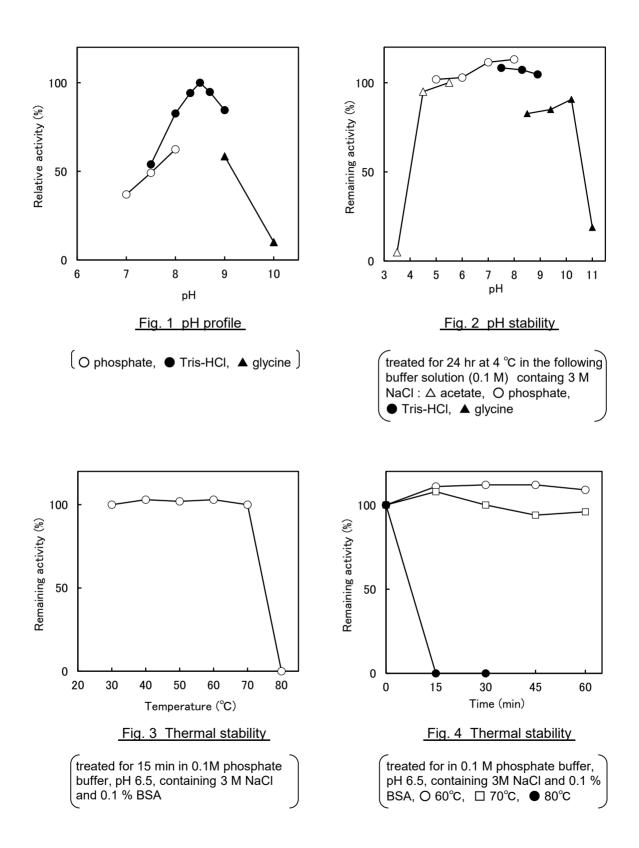
- 3. Add 0.015 mL of enzyme solution into the cuvette and mix.
- 4. Read absorbance change at 340 nm per minute (ΔAbs_{340}) in the linear portion of curve.

Calculation

Volume activity (U/mL) = $\frac{(\Delta Abs_{340}) \times (2.70 + 0.015)}{6.22 \times 0.015} \times d.f.$

Volume activity (U/mL)

Protein concentration (mg/mL)*


d.f. ; dilution factor

6.22 ; millimolar extinction coefficient of NADH (cm²/µmol) *Protein concentration ; determined by the absorbance at 280nm (Abs280), where 1 Abs280 = 1 mg/mL

REFERENCE

1. Ramaley, R.F. and Vasantha, N.; *J. Biol. Chem.* **258**, 12558-12565 (1983)

