

GALACTOSE DEHYDROGENASE (GalDH)

[EC 1. 1. 1. 48]

from recombinant E. coli

D-Galactose + NAD(P) $^{+} \leftrightarrow$ D-Galactono- δ -lactone + NAD(P)H + H $^{+}$

SPECIFICATION

: Ammonium sulphate suspension State Specific activity : more than 80 U/mg protein . Contaminants : (as GalDH activity = 100 %)

> NADH oxidase < 0.10 % LDH < 0.10 % ADH < 0.01 %

PROPERTIES

Subunit molecular weight : ca. 33,800

Optimum pH : 10.5 (Fig. 1) pH stability : 5.0 - 10.0 (Fig. 2) Thermal stability : No significant decrease in activity up to 50 °C with Ammonium

sulphate and 40 °C without Ammonium sulphate .(Fig. 3, 4)

Michaelis constants : D-Galactose 0.25 mM NAD+

0.15 mM

Substrate specificity (100mM) 100 % : D-Galactose

0.2 % **D-Glucose** 8.7 % D-Xvlose **D-Maltose** 0.1 % **D-Sucrose** 0.1 %

STORAGE

Store at 2 to 10 °C (Do not freeze) Stable at 4 °C for at least one year

APPLICATION

This enzyme is useful for determination of galactose.

ASSAY

Principle

The change in absorbance is measured at 340 nm according to the following reaction.

Unit Definition

One unit of activity is defined as the amount of GaIDH that forms 1 μ mol of NADH per minute at 30 °C.

Solutions

I Buffer solution; 100 mM Tris-HCl, pH9.1 (at 30 °C)

 ${\rm I\hspace{-.1em}I} \quad NAD^+ \ solution \ ; \ 100 \ mM$

■ D-Galactose solution; 1 M

IV Enzyme diluent; 20 mM potassium phosphate, 0.1 % bovine serum albumin, pH 7.5

Preparation of Enzyme Solution

Dilute the enzyme suspension to approx. 5 U/mL with the enzyme diluent.

Procedure

1. Prepare the following reaction mixture and pipette 3.00 mL of reaction mixture into a cuvette.

Solution II 27.60 mL Solution II 0.90 mL Solution III 1.50 mL

- 2. Incubate at 30 °C for about 3 minutes.
- 3. Add 0.01 mL of enzyme solution into the cuvette and mix.
- 4. Read absorbance change at 340 nm per minute ($\triangle Abs_{340}$) in the linear portion of curve.

Calculation

Volume activity (U/mL) =
$$\frac{(\Delta Abs_{340}) \times (3.00 + 0.01)}{6.22 \times 0.01} \times d.f.$$

d.f.; dilution factor

6.22; millimolar extinction coefficient of NADH (cm²/µmol) *Protein concentration; determined by the Bradford's method

Fig. 1 pH profile

△ acetate, ○ phosphate,

● Tris-HCl, ▲ Glycine-KOH

treated for 24 hr at 4 °C in the folowing buffer solution (0.1 M); △ acetate, O phosphate,

■ Tris-HCl, ▲ Glycine-KOH

Fig. 3 Thermal stability

treated for 15 min in 25 mM
potassium phosphate buffer
pH 7.5, with or without 3.2 M
ammonium sulphate (AmS).

Fig. 4 Thermal stability

treated in 25 mM potassium phosphate buffer pH 7.5 at O 40 °C, □ 50 °C, ● 60 °C without ammonium sulphate.

Fig. 5 Storage Stability

ammonium suiphate suspension (ca. 1300 U/mL) store at 4 °C(○)