

DIAPHORASE I (Di-1)

[EC 1. 6. 99. -]

from Bacillus stearothermophilus

 $NAD(P)H + Acceptor(ox.) + H^+ \leftrightarrow NAD(P)^+ + Acceptor(red.)$

SPECIFI	CATION		
	State	: Lyophilized	
	Specific activity	: more than 1,000 U/mg protein	
	Contaminants	: (as Diaphorase activity = 100 %)	
		Adenylate kinase	< 0.01 %
		NADH oxidase	< 0.01 %
PROPER	RTIES		
	Molecular weight	: ca. 30,000	
	Optimum pH	: 8.0	(Fig. 1)
	pH stability	: 7.5 - 9.5	(Fig. 2)
	Isoelectric point	: 4.7	
	Optimum temperature	: 70 °C	
	Thermal stability	: No detectable decrease in activity up to 50 °C.	(Fig. 3, 4)
	Michaelis constants	: See Table 1	
	Substrate specificity	: See Table 1	
	Effectors	: cations and anions	(Fig. 5, 6)

STORAGE

Stable at -20 to 5 °C for at least one year

APPLICATION

The enzyme is useful for the measurement of various dehydrogenase reactions in visible spectral range.

ASSAY

Principle

The change in absorbance is measured at 600 nm according to the following reaction.

NAD(P)H + DCIP(ox.)+ H⁺ \longrightarrow NAD(P)⁺ + DCIP(red.)

Unit Definition

One unit of activity is defined as the amount of Di-1 that reduces 1 μmol of DCIP per minute at 30 °C.

Solutions

- I Buffer solution ; 500 mM Tris-HCI, pH8.5
- I NADH solution ; 13.1 mM (0.100 g NADH disodium salt·3H₂O/10 mL distilled water)
- III 2,6-Dichlorophenolindophenol (DCIP) solution ; 1.2 mM (2.0 mg DCIP sodium salt·2H₂O/5mL distilled water) (prepare freshly)

Preparation of Enzyme Solution

Dissolve the lyophilized enzyme with distilled water and dilute to 1.0 to 2.0 U/mL with 50 mM potassium phosphate buffer, pH 7.5.

Procedure

1. Prepare the following reaction mixture and pipette 2.85 mL of reaction mixture into a cuvette.

Solution I	3.00mL
Solution II	2.28mL
H ₂ O	23.22mL

- 2. Incubate at 30 °C for about 3 minutes.
- 3. Add 0.15 mL of Solution III and 0.01 mL of enzyme solution into the cuvette and mix.
- Read absorbance change at 600 nm per minute (△Abs(test)) in linear portion of curve. Repeat the Procedure 3 using distilled water in place of enzyme solution, and △Abs(blank) is obtained.

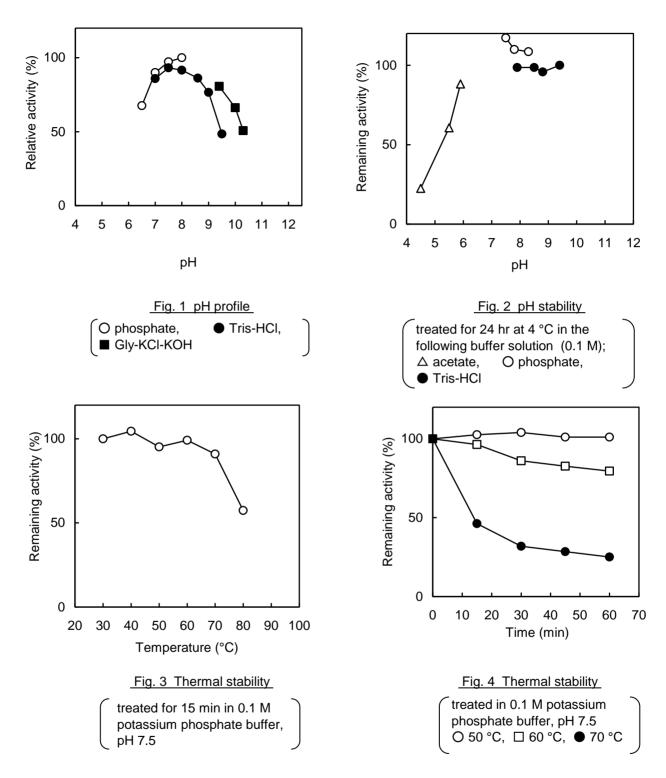
Calculation

Volume activity (U/mL) = $\frac{(\Delta Abs \text{ (test)} - \Delta Abs \text{ (blank)}) \text{ X (3.00 + 0.01)}}{19 \text{ X 0.01}} \text{ X d.f.}$

Volume activity (U/mL)

Specific activity (U/mg protein) = Protein concentration (mg/mL)*

d.f. ; dilution factor


19 ; millimolar extinction coefficient of DCIP (cm²/µmol)

*Protein concentration ; determined by Bradford's method

REFERENCE

1. Mains, I., Power, D.M., Thomas, E.W. and Buswell J. A.; *Biochem. J.*, **191**, 457 (1980)

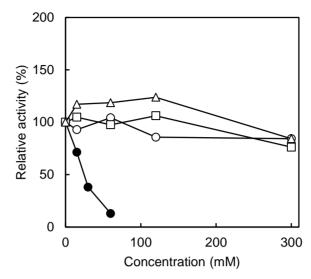
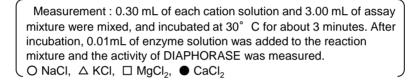
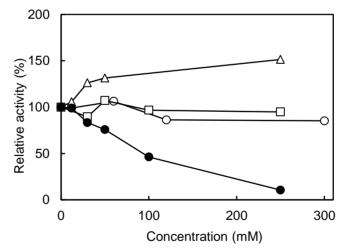
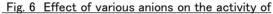





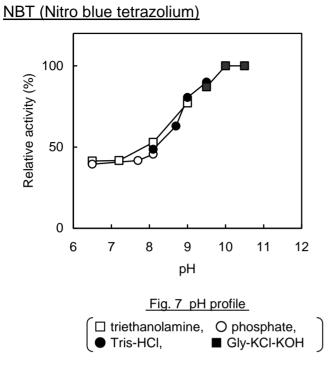
Fig. 5 Effect of various cations on the activity of DIAHORASE

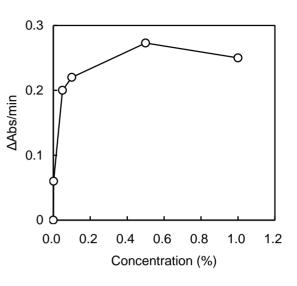
Measurement : 0.30 mL of each anion solution and 3.00 mL of assay mixture were mixed, and incubated at 30° C for about 3 minutes. After incubation, 0.01 mL of enzyme solution was added to the reaction mixture and the activity of DIAPHORASE was measured. O NaCl, $\triangle CH_3COONa$, $\Box Na_2SO_4$, $\blacksquare NaHCO_3$

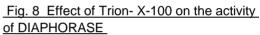
Acceptor		DCIP ^{*1}	NBT ^{*2}	INT ^{*3}	FMN ^{*4}
Km ^{Acceptor} (m	M)	0.015	0.15	0.40	-
Km ^{NADH} (m	M)	0.50	0.02	0.07	-
Km ^{NADPH} (m	M)	0.52	0.19	0.50	-
Optimum pH		8.0	> 10	7.5	< 6.5
Activity NADH (U/m	ng)	1,200	225	290	18
Activity NADPH (U/m	g)	4	150	120	-
Assay Mixture		Tris-HCI (pH 8.5) 50 mM NAD(P)H 1 mM DCIP 0.06 mM	TEA (pH 7) 50 mM NAD(P)H 1 mM NBT 0.5 mM Triton X-100 0.1 %	Phosphate (pH 7.5) 96 mM NAD(P)H 1 mM INT 3 mM DMSO* ⁶ 2 % BSA* ⁵ 1 mg/mL	Phosphate (pH 7) 88 mM NADH 0.2 mM FMN 0.13 mM
Wavelength for measurement (nm)	600	550	492	340
Extinction coefficient (cm²/µmo	ol)	19	12.4	19.2	6.2

Table 1. SUBSTRATE SPECIFICITY OF DIAPHORASE

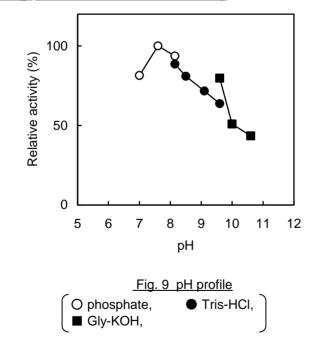
- *1 2,6-Dichlorophenolindophenol
- *2 Nitro blue tetrazolium
- *3 p-lodonitrotetrazolium violet
- *4 Flavin mononucleotide
- *5 Bovine serum albumin
- *6 Added 1/40 volume of 120mM INT (0.607g/10mL 80% DMSO) into the Assay Mixture

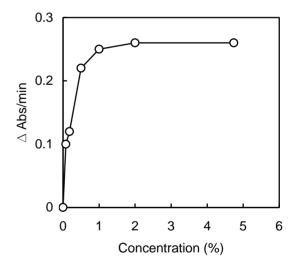

Effect of BSA on the activity of DIAPHORASE: (See next page)

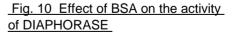

BSA stimulates the activity with INT as electron acceptor and the activation can be increased 30 fold with concentrations above 1 mg/mL BSA (Fig. 10). The extent of activation for DCIP is about 35 %, whereas the activities with NBT and FMN are not affected by BSA.


Effect of Triton X-100 on the activity of DIAPHORASE: (See next page)

The activity with NBT is little in the absence of Triton X-100, but is greatly increased by the addition of Triton X-100 (Fig. 8). On the other hand, Triton X-100 has no effect on the activities with DCIP, INT and FMN.







INT (p-lodonitrotetrazolium violet)

