

BILIRUBIN OXIDASE (BOD3)

[EC 1.3.3.5]

from Trachyderma tsunodae

2 Bilirubin + $O_2 \rightarrow 2$ Biliverdin + 2 H₂O

SPECIFICATION State Specific act	ivity	: Lyophilized : more than 100 U/mg protein		
PROPERTIES				
Molecular w	<i>i</i> eight	: ca. 60,000 : ca. 80,000	(SDS-electrophoresis) (Gel filtration)	
Optimum pl	H	: 5.0	· · · ·	(Fig. 1)
pH stability		: 4.0 – 11.0	(4 °C, 24 hr)	(Fig. 2)
	point (calculation)	: 3.8		
Optimum te	mperature	: 65 – 80 °C		(Fig. 3)
Thermal sta	ıbility	: No detectable decrease in activity up to 50 °C. (pH 7.0) (Fig. 4, 5)		
Michaelis co	onstants	: See table 1		
Substrate s	pecificity	: See table 1		

STORAGE

Stable at -20 °C for one year

APPLICATION

The enzyme is useful for enzymatic determination of bilirubin. It could be used as a cathode catalyst in biofuel cells.

ASSAY

Principle

The change in absorbance is measured at 500 nm according to the following reaction.

Phenol + $\frac{1}{2}O_2$ + H₂O $\xrightarrow{BOD3}$ Quinone and/or Phenoxy radical + H₂O₂ 2 H₂O₂ + 4-Aminoantipyrine + Phenol \xrightarrow{POD} Quinoneimine + 4 H₂O

Unit Definition

One unit of activity is defined according to the calculation formula below.

Solutions

- I Buffer solution ; 300 mM Potassium phosphate buffer, pH7.0
- II 4-Aminoantipyrine (4-AA) solution ; 24.6 mM (0.25 g 4-AA / 50 mL distilled water)
- III Phenol solution ; 420 mM (1.98 g phenol/50mL distilled water)
- IV Peroxidase*1 (POD) solution ; 240 U/mL (2,400 U/10mL distilled water) *1POD: TOYOBO Co., LTD. Grade Ⅲ #PEO-302

Preparation of Enzyme Solution

Dissolve the lyophilized enzyme with distilled water and dilute to 15 to 60 U/mL with 10 mM potassium phosphate buffer, pH 7.0 containing 0.1 % BSA.

Procedure

1. Prepare the following reaction mixture and pipette 0.90 mL of reaction mixture into a cuvette.

Solution I	4.00 mL
Solution II	0.40 mL
Solution III	0.40 mL
SolutionIV	0.40 mL
H ₂ O	6.40 mL

- 2. Incubate at 37 °C for about 3 minutes.
- 3. Add 0.005 mL of enzyme solution into the cuvette and mix.
- Read absorbance change at 500 nm per minute (∆Abs (test)) in linear portion of curve. Repeat the procedure 3 using distilled water in place of enzyme solution, and ∆Abs (blank) is obtained.

Calculation

Volume activity (U/mL) = $\frac{(\Delta Abs)}{2}$	(∆Abs (test) - ∆Abs (blank)) X (0.90 + 0.005)	
	11.11 X 0.005 X 1/20	
Specific activity (Ll/mg protein) -	Volume activity (U/mL)	
Specific activity (U/mg protein) =	Protein concentration (mg/mL)*2	

- d.f. ; dilution factor
- 11.11 ; millimolar extinction coefficient of quinoneimine dye at 500 nm (cm²/µmol)

1/20 ; coefficient of transformation for internal unit definition

*²Protein concentration ; determined by Bradford's method

Table 1. Substrate specificity of BOD3

	Phenol	ABTS	Bilirubin C	Bilirubin F
Optimum pH	5.0	4.0	6.0	6.0
Michaelis constants (µM)	41	39	26	26
Relative activity (%)	100	427	36	8
Wavelength for Measurement (nm)	500	405	450	450
Extinction Coefficient (cm²/µmol)	11.11	29	74	32

Michaelis constants and activity of phenol were defined at pH 7.0. They were defined at each optimum pH when the substrate was ABTS, Bilirubin C, or Bilirubin F,.