

ALANINE DEHYDROGENASE (AlaDH)

[EC 1. 4. 1. 1]

from Bacillus stearothermophilus

L-Alanine + NAD+ + H₂O ↔ Pyruvate + NH₄+ + NADH

SPECIFICATION

State : Lyophilized

Specific activity : more than 10 U/mg protein Contaminants : (as AlaDH activity = 100 %)

> NADH oxidase < 0.01 % Lactate dehydrogenase < 0.10 %

PROPERTIES

Molecular weight : ca. 230,000 Subunit molecular weight : ca. 38,000

Optimum pH : 10.4 (Fig. 1) pH stability : 7.0 - 11.5 (Fig. 2) Thermal stability : No detectable decrease in activity up to 70 °C. (Fig. 3, 4)

Michaelis constants : (125 mM Glycine-NaOH buffer, pH 10.5, at 30 °C)

L-Alanine 10.0 mM

 NAD^{+} 0.26 mM

Substrate specificity : L-Alanine 100 %

L-Leucine 0 % L-Isoleucine 0 %

STORAGE

Stable at -20 °C for at least one year

APPLICATION

The enzyme is useful for determination of L-alanine.

ASSAY

Principle

The change in absorbance is measured at 340 nm according to the following reaction.

Unit Definition

One unit of activity is defined as the amount of AlaDH that forms 1 μ mol of NADH per minute at 30 °C.

Solutions

- I Buffer solution; 250 mM Glycine-NaOH, pH 10.5
- I L-Alanine solution; 150 mM (1.336 g L-alanine/80 mL distilled water, adjusted to pH 10.5 with 1 N-NaOH and filled up to 100 mL with distilled water)
- III NAD+ solution; 100 mM (0.663 g NAD+/ 10 mL with distilled water)

Preparation of Enzyme Solution

Dissolve the lyophilized enzyme with distilled water and dilute to 5 to 10 U/mL with 100 mM glycine - NaOH buffer, pH 9.5.

Procedure

1. Prepare the following reaction mixture and pipette 3.00 mL of reaction mixture into a cuvette.

 Solution I
 15.00 mL
 Solution II
 1.50 mL

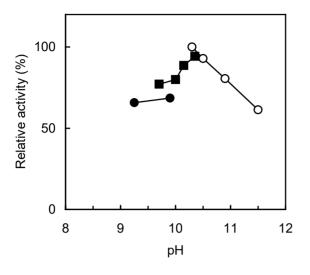
 Solution II
 10.00 mL
 H₂O
 3.50 mL

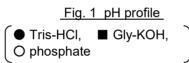
- 2. Incubate at 30 °C for about 3 minutes.
- 3. Add 0.01 mL of enzyme solution into the cuvette and mix.
- 4. Read absorbance change at 340 nm per minute (ΔAbs₃₄₀) in the linear portion of curve.

Calculation

Volume activity (U/mL) =
$$\frac{(\Delta Abs_{340}) \times (3.00 + 0.01)}{6.22 \times 0.01} \times d.f.$$

d.f.; dilution factor


6.22; millimolar extinction coefficient of NADH (cm²/µmol)


*Protein concentration; determined by Bradford's method

REFERENCE

1. Sakamoto, Y., Nagata, S., Esakl, N., Tanaka, H. and Soda, K.; J. Ferment. Bioeng., 69, 154 (1990)

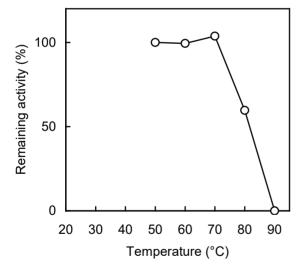


Fig. 3 Thermal stability

treated for 15 min in 0.1 M Gly-KOH buffer, pH 9.0

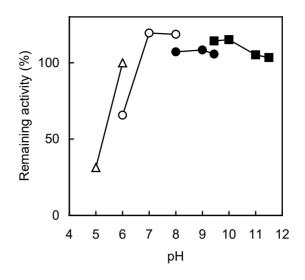


Fig. 2 pH stability

treated for 24 hr at 4 °C in the following buffer solution (0.1 M);

△ acetate, O phosphate,

■ Tris-HCl, ■ Gly-KOH

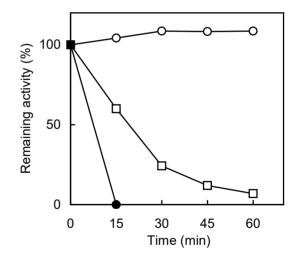


Fig. 4 Thermal stability

treated in 0.1 M Gly-KOH buffer, pH 9.0 O 70 °C, □ 80 °C, ● 90 °C