

6-PHOSPHOGLUCONATE DEHYDROGENASE (DECARBOXYLATING) (6PGDH)

[EC 1. 1. 1. 44]

from Microorganism

6-Phospho-D-gluconate + NAD⁺ ↔ D-Ribulose 5-phosphate + CO₂ + NADH + H⁺

SPECIFICATION

State : Lyophilized

Specific activity : more than 40 U/mg protein Contaminants : (as 6PGDH activity = 100 %)

Glucokinase < 0.01 %
Phosphoglucomutase < 0.01 %
Hexose-6-phosphate isomerase < 0.01 %
Glutathione reductase < 0.01 %

PROPERTIES

Molecular weight : ca. 132,000 Subunit molecular weight : ca. 33,000

Optimum pH : 7.0 - 7.5 (Fig. 1) pH stability : 5.0 - 10.0 (Fig. 2)

Isoelectric point : ca. 4.5

Thermal stability : (50 mM MES-NaOH buffer, pH 6.8, containing 0.5 M KCl)

No detectable decrease in activity up to 40 °C. (Fig. 3, 4)

Michaelis constants : (80 mM Glycylglycine buffer, pH 7.5, at 30 °C)

6-Phospho-D-gluconate 0.95 mM NAD⁺ 0.32 mM

Stabilizer : KCl, MgCl₂, Sorbitol, BSA Activators : Mg²⁺, Mn²⁺, Ca²⁺, K⁺, Na⁺

Inhibitors : Fructose 1,6-bisphosphate, Erythrose 4-phosphate, NADH

STORAGE

Stable at -20 °C for at least six months

ASSAY

Principle

The change in absorbance is measured at 340 nm according to the following reaction.

Unit Definition

One unit of activity is defined as the amount of 6PGDH that forms 1 μ mol of NADH per minute at 30 °C.

Solutions

- I Buffer solution; 100 mM Glycylglycine-NaOH, pH 7.5
- II 6-Phospho-D-gluconate (6PG) solution; 100 mM (0.378g 6PG trisodium salt·2H₂O/10 mL distilled water)
- III NAD⁺ solution; 50 mM (0.332 g NAD⁺ free acid/10 mL distilled water)
- IV MgCl₂ solution; 1 M (20.33 g MgCl₂·6H₂O/100 mL distilled water)

Preparation of Enzyme Solution

Dissolve the lyophilized enzyme with distilled water and dilute to 5 to 10 U/mL with 100 mM MES-NaOH buffer containing 1 mg/mL BSA, pH 6.8.

Procedure

1. Prepare the following reaction mixture and pipette 3.00 mL of reaction mixture into a cuvette.

Solution I 24.6mL

Solution II 3.0mL

Solution III 2.1mL

2.111

Solution IV 0.3mL

- 2. Incubate at 30 °C for about 3 minutes.
- 3. Add 0.01 mL of enzyme solution into the cuvette and mix.
- 4. Read absorbance change at 340 nm per minute (ΔAbs₃₄₀) in the linear portion of curve.

Calculation

Volume activity (U/mL) =
$$\frac{(\Delta Abs_{340}) \times (3.00 + 0.01)}{6.22 \times 0.01} \times d.f.$$

d.f.; dilution factor

6.22; millimolar extinction coefficient of NADH (cm²/µmol)

*Protein concentration; determined by Bradford's method

Fig. 1 pH profile

△ acetate,○ phosphate,□ TEA-NaOH,▲ GlyGly-NaOH,● Tris-HCl

treated for 24 hr at 4 °C in the following buffer solution (0.1 M);

△ acetate, O phosphate,

▲ MES-NaOH, ■ Tris-HCl,
■Gly-KOH

Fig. 3 Thermal stability

treated for 15 min in 50 mM MES-NaOH buffer, pH 6.8, containing 0.5 M KCI

Fig. 4 Thermal stability

treated in 50 mM MES-NaOH buffer, pH 6.8, containing 0.5 M KCl O 40 °C, □ 50 °C, ● 60 °C